Skip to main content

Spectrum Representation

  • Chapter
  • 1348 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

In this chapter, we provide an overview of spectrum representation methods. Along these lines, we review compact representations of the spectrum commonly used in the literature. These representations include those that view the spectra as a mixture, those that represent the spectra using a spline and subspace projection methods. We then focus on the representation of the spectra based upon log-linearity and heavy-tailed probability distributions. This permits the use of harmonic analysis so as to understand affine invariance and band correlation in spectral imaging. We finish the chapter by elaborating upon the automatic recovery of absorptions making use of methods such as fingerprint, derivative analysis, unimodal segmentation, etc. we also provide a complexity analysis and comment on absorption representation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://speclab.cr.usgs.gov/spectral-lib.html.

References

  • Adams, M. L., Philpot, W. D., & Norvell, W. A. (1999). Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. International Journal of Remote Sensing, 20(18), 3663–3675.

    Article  Google Scholar 

  • Angelopoulou, E. (2000). Objective colour from multispectral imaging. In European conference on computer vision (pp. 359–374).

    Google Scholar 

  • Angelopoulou, E., Molana, R., & Daniilidis, K. (2001). Multispectral skin color modeling. In Computer vision and pattern recognition (pp. 635–642).

    Google Scholar 

  • Asmussen, S., Binswanger, K., & Hojgaard, B. (2000). Rare events simulation for heavy-tailed distributions. Bernoulli, 6(2), 303–322.

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson, P., Webster, R., & Curran, P. (1994). Cokriging with airborne mss imagery. Remote Sensing of Environment, 50, 335–345.

    Article  Google Scholar 

  • Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. Annals of Mathematical Statistics, 26(4), 641–647.

    Article  MathSciNet  MATH  Google Scholar 

  • Boser, B. E., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In ACM conference on computational learning theory (pp. 144–152).

    Google Scholar 

  • Bracewell, R. N., Chang, K. Y., Jha, A. K., & Wang, Y. H. (1993). Affine theorem for two-dimensional Fourier transform. Electronics Letters, 29(3), 304.

    Article  Google Scholar 

  • Brown, A. J. (2008). Spectral curve fitting for automatic hyperspectral data analysis. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1601–1608.

    Article  Google Scholar 

  • Butler, W. L., & Hopkins, D. W. (1970). Higher derivative analysis of complex absorption spectra. Photochemistry and Photobiology, 12, 439–450.

    Article  Google Scholar 

  • Chang, C. q. I., Chakravarty, S., Chen, H. q. M., & Ouyang, Y. q. C. (2009). Spectral derivative feature coding for hyperspectral signature analysis. Pattern Recognition, 42(3), 395–408. doi:10.1016/j.patcog.2008.07.016. http://dx.doi.org/10.1016/j.patcog.2008.07.016.

    Article  MATH  Google Scholar 

  • Chum, O., Philbin, J., Sivic, J., Isard, M., & Zisserman, A. (2007). Total recall: automatic query expansion with a generative feature model for object retrieval. In International conference on computer vision.

    Google Scholar 

  • Clark, R., & Roush, T. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340.

    Article  Google Scholar 

  • Clark, R., Swayze, G., Livo, K., Kokaly, R., Sutley, S., Dalton, J., McDougal, R., & Gent, C. (2003). Imaging spectroscopy: earth and planetary remote sensing with the usgs tetracorder and expert system. Journal of Geophysical Research, 108(5), 1–44.

    Google Scholar 

  • Clark, R. N., Gallagher, A. J., & Swayze, G. A. (1990). Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. In Proceedings of the second airborne visible/infrared imaging spectrometer workshop (pp. 176–186).

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge: Cambridge University Press.

    Google Scholar 

  • De Boor, C. (1978). A practical guide to splines. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Demetriades-Shah, T. H., Steven, M. D., & Clark, J. A. (1990). High resolution derivatives spectra in remote sensing. Remote Sensing of Environment, 33, 55–64.

    Article  Google Scholar 

  • Doretto, G., Chiuso, A., Wu, Y., & Soatto, S. (2003). Dynamic textures. International Journal of Computer Vision, 51(2), 91–109.

    Article  MATH  Google Scholar 

  • Dror, R. O., Adelson, E. H., & Willsky, A. S. (2001). Recognition of surface reflectance properties from a single image under unknown real-world illumination. In Proceedings of the IEEE workshop on identifying objects across variations in lighting.

    Google Scholar 

  • Fell, A. F., & Smith, G. (1982). Higher derivative methods in ultraviolet, visible and infrared spectrophotometry. Analytical Proceedings, 22, 28-33.

    Google Scholar 

  • Fu, Z., Caelli, T., Liu, N., & Robles-Kelly, A. (2006a). Boosted band ratio feature selection for hyperspectral image classification. In Proceedings of the international conference on pattern recognition (Vol. 1, pp. 1059–1062).

    Google Scholar 

  • Fu, Z., Tan, R., & Caelli, T. (2006b). Specular free spectral imaging using orthogonal subspace projection. In Proceedings of the international conference on pattern recognition (Vol. 1, pp. 812–815).

    Google Scholar 

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). New York: Academic Press.

    MATH  Google Scholar 

  • Graham, R. L. (1972). An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1, 132–133.

    Article  MATH  Google Scholar 

  • Grauman, K., & Darrell, T. (2007). The pyramid match kernel: efficient learning with sets of features. Journal of Machine Learning Research, 8, 725–760.

    MATH  Google Scholar 

  • Hsu, P. (2003). Spectral feature extraction of hyperspectral images using wavelet transform. PhD thesis, Department of Survey Engineering, National Cheng Kung University.

    Google Scholar 

  • Huynh, C. P., & Robles-Kelly, A. (2008). A NURBS-based spectral reflectance descriptor with applications in computer vision and pattern recognition. In IEEE conference on computer vision and pattern recognition.

    Google Scholar 

  • Jacobs, D. W., Belheumer, P. N., & Basri, R. (1998). Comparing images under variable illumination. In Computer vision and pattern recognition (pp. 610–617).

    Google Scholar 

  • Jimenez, L., & Landgrebe, D. (1999). Hyperspectral data analysis and feature reduction via projection pursuit. IEEE Transactions on Geoscience and Remote Sensing, 37(6), 2653–2667.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. Berlin: Springer.

    MATH  Google Scholar 

  • Katznelson, Y. (2004). An introduction to harmonic analysis. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Khuwuthyakorn, P., Robles-Kelly, A., & Zhou, J. (2009). An affine invariant hyperspectral texture descriptor based upon heavy-tailed distributions and Fourier analysis. In Joint IEEE international workshop on object tracking and classification in and beyond the visible spectrum (pp. 112–119).

    Google Scholar 

  • Koenderink, J. J. (1984). The structure of images. Biological Cybernetics, 50, 363–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Landgrebe, D. (2002). Hyperspectral image data analysis. IEEE Signal Processing Magazine, 19, 17–28.

    Article  Google Scholar 

  • Lansel, S., Parmar, M., & Wandell, B. A. (2009). Dictionaries for sparse representation and recovery of reflectances. In SPIE proceedings: Vol. 7246. Computational imaging. Bellingham: SPIE.

    Google Scholar 

  • Lee, E. T. Y. (1989). Choosing nodes in parametric curve interpolation. Computer Aided Design, 21(6), 363–370.

    Article  MATH  Google Scholar 

  • Lenz, R., Latorre, P., & Meer, P. (2007). The hyperbolic geometry of illumination-induced chromaticity Changes. In Computer vision and pattern recognition.

    Google Scholar 

  • Liang, S. (2004). Quantitative remote sensing of land surfaces. New York: Wiley-Interscience.

    Google Scholar 

  • Lillesand, T., & Ralph, W. (2000). Remote sensing and image interpretation (4th ed.). New York: Wiley.

    Google Scholar 

  • Lin, S., & Lee, S. W. (1997). Using chromaticity distributions and eigenspaces for pose, illumination, and specularity invariant 3D object recognition. In Computer vision and pattern recognition (pp. 426–431).

    Google Scholar 

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Maloney, L. T. (1986). Evaluation of linear models of surface spectral reflectance with small numbers of parameters. Journal of the Optical Society of America A, 3(10), 1673–1683.

    Article  Google Scholar 

  • Marimont, D. H., & Wandell, B. A. (1992). Linear models of surface and illuminant spectra. Journal of the Optical Society of America A, 9(11), 1905–1913.

    Article  Google Scholar 

  • Matas, J., Chum, O., Martin, U., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In Proceedings of the British machine vision conference (pp. 384–393).

    Google Scholar 

  • Nayar, S., & Bolle, R. (1996). Reflectance based object recognition. International Journal of Computer Vision, 17(3), 219–240.

    Article  Google Scholar 

  • Nilsback, M. E., & Zisserman, A. (2006). A visual vocabulary for flower classification. In Computer vision and pattern recognition (pp. 1447–1454).

    Google Scholar 

  • Nister, D., & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In Computer vision and pattern recognition (pp. 2161–2168).

    Google Scholar 

  • Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-time signal processing. New York: Prentice Hall.

    Google Scholar 

  • Phinn, S. R., Franklin, J., Stow, D., Hope, A., & Huenneke, L. (1996). Biomass distribution mapping in a semi-arid environment using airborne video imagery and spatial statistics. Journal of Environmental Management, 46(2), 139–165.

    Article  Google Scholar 

  • Piech, M., & Piech, K. (1987). Symbolic representation of hyperspectral data. Applied Optics, 26, 4018–4026.

    Article  Google Scholar 

  • Piegl, L., & Tiller, W. (1995). The nurbs book. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Rao, K. R., & Yip, P. (1990). Discrete cosine transform: algorithms, advantages, applications. New York: Academic Press.

    MATH  Google Scholar 

  • Ribeiro, E., & Hancock, E. R. (2001). Shape from periodic texture using the eigenvectors of local affine distorition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(12), 1459–1465.

    Article  Google Scholar 

  • Roberts, D. A., Brown, K., Green, R. O., Ustin, S. L., & Hinckley, T. (1998). Investigating the relationships between liquid water and leaf area in clonal populus. In Summaries of the 7th annual JPL earth science workshop (Vol. 1, pp. 335–344).

    Google Scholar 

  • Shah, C., Watanachaturaporn, P., Arora, M., & Varshney, P. (2003). Some recent results on hyperspectral image classification. In IEEE workshop on advances in techniques for analysis of remotely sensed data.

    Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2003). Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sensing of Environment, 84, 526–537.

    Article  Google Scholar 

  • Sivic, J., Russell, B., Efros, A., Zisserman, A., & Freeman, W. (2005). Discovering objects and their location in images. In International conference on computer vision (pp. 370–377).

    Google Scholar 

  • Slater, D., & Healey, G. (1997). Object recognition using invariant profiles. In Computer vision and pattern recognition (pp. 827–832).

    Google Scholar 

  • Smith, W., Robles-Kelly, A., & Hancock, E. R. (2004). Skin reflectance modelling for face recognition. In Proceedings of the international conference on pattern recognition (pp. 210–213).

    Google Scholar 

  • Sneddon, I. N. (1995). Fourier transforms. New York: Dover.

    Google Scholar 

  • Stein, E., & Shakarchi, R. (2003). Fourier analysis: an introduction. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Stokman, H. M. G., & Gevers, T. (1999). Detection and classification of hyper-spectral edges. In British machine vision conference.

    Google Scholar 

  • Stout, Q. (2002). Optimal algorithms for unimodal regression. Computing Science and Statistics, 32.

    Google Scholar 

  • Sunshine, J., Pieters, C. M., & Pratt, S. F. (1990). Deconvolution of mineral absorption bands: an improved approach. Journal of Geophysical Research, 95(B5), 6955–6966.

    Article  Google Scholar 

  • Tan, R. T., Nishino, K., & Ikeuchi, K. (2004). Separating reflection components based on chromaticity and noise analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1373–1379.

    Article  Google Scholar 

  • Tiller, W. (1992). Knot-removal algorithms for NURBS curves and surfaces. Computer Aided Design, 24(8), 445–453.

    Article  MATH  Google Scholar 

  • Varma, M., & Ray, D. (2007). Learning the discriminative powerinvariance trade-off. In International conference on computer vision.

    Google Scholar 

  • Vasconcelos, N. (2004). On the efficient evaluation of probabilistic similarity functions for image retrieval. IEEE Transactions on Information Theory, 50(7), 1482–1496.

    Article  MathSciNet  Google Scholar 

  • Webb, A. (2002). Statistical pattern recognition. New York: Wiley.

    Book  MATH  Google Scholar 

  • Winder, S., & Brown, M. (2007). Learning local image descriptors. In IEEE conference on computer vision and pattern recognition.

    Google Scholar 

  • Witkin, A. P. (1983). Scale-space filtering. In Proceedings of the eighth international joint conference on artificial intelligence (Vol. 2, pp. 1019–1022).

    Google Scholar 

  • Yasuma, F., Mitsunaga, T., Iso, D., & Nayar, S. K. (2010). Generalized assorted pixel camera: post-capture control of resolution, dynamic range and spectrum. IEEE Transactions on Image Processing, 19(9), 2241–2253.

    Article  MathSciNet  Google Scholar 

  • Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3, 19–22.

    Article  MATH  Google Scholar 

  • Young, N. (1988). An introduction to Hilbert space. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Robles-Kelly, A., Huynh, C.P. (2013). Spectrum Representation. In: Imaging Spectroscopy for Scene Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4652-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4652-0_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4651-3

  • Online ISBN: 978-1-4471-4652-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics