Skip to main content

Shape and Refractive Index from Polarisation

  • Chapter
Imaging Spectroscopy for Scene Analysis

Abstract

In this chapter, we address the problem of the simultaneous recovery of the shape and refractive index of an object from a spectro-polarimetric image captured from a single view. Here, we focus on the diffuse polarisation process occurring at dielectric surfaces due to subsurface scattering and transmission from the object surface into the air. The diffuse polarisation of the reflection process is modelled by the Fresnel transmission theory. We present a method for estimating the azimuth angle of surface normals from the spectral variation of the phase of polarisation. Moreover, we estimate the zenith angle of surface normals and index of refraction simultaneously in a well-posed optimisation framework. We achieve well-posedness by introducing two additional constraints to the problem, including the surface integrability and the material dispersion equation. This yields an iterative solution which is computationally efficient due to the use of closed-form solutions for both the zenith angle and the refractive index in each iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson, G., & Hancock, E. R. (2005). Multi-view surface reconstruction using polarization. In International conference on computer vision (pp. 309–316).

    Google Scholar 

  • Atkinson, G. A., & Hancock, E. R. (2006). Recovery of surface orientation from diffuse polarization. IEEE Transactions on Image Processing, 15(6), 1653–1664.

    Article  Google Scholar 

  • Atkinson, G. A., & Hancock, E. R. (2007). Shape estimation using polarization and shading from two views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2001–2017.

    Article  Google Scholar 

  • Belhumeur, P. N., Kriegman, D. J., & Yuille, A. L. (1997). The bas-relief ambiguity. Computer Vision and Pattern Recognition, p. 1060.

    Google Scholar 

  • Born, M., & Wolf, E. (1999). Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (7th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Chen, H., & Wolff, L. B. (1998). Polarization phase-based method for material classification in computer vision. International Journal of Computer Vision, 28(1), 73–83.

    Article  Google Scholar 

  • Coleman, T. F., & Li, Y. (1996). A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization, 6(4), 1040–1058.

    Article  MathSciNet  MATH  Google Scholar 

  • Drbohlav, O., & Sára, R. (2001). Unambigous determination of shape from photometric stereo with unknown light sources. In International conference on computer vision (pp. 581–586).

    Google Scholar 

  • Frankot, R. T., & Chellappa, R. (1988). A method of enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(10), 439–451.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2001). Digital image processing (2nd ed.). Boston: Addison-Wesley Longman.

    Google Scholar 

  • Kasarova, S. N., Sultanova, N. G., Ivanov, C. D., & Nikolo, I. D. (2007). Analysis of the dispersion of optical plastic materials. Optical Materials, 29, 1481–1490.

    Article  Google Scholar 

  • Miyazaki, D., Kagesawa, M., & Ikeuchi, K. (2004). Transparent surface modeling from a pair of polarization images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 73–82.

    Article  Google Scholar 

  • Miyazaki, D., Saito, M., Sato, Y., & Ikeuchi, K. (2002). Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths. Journal of the Optical Society of America A, 19(4), 687–694.

    Article  Google Scholar 

  • Miyazaki, D., Tan, R. T., Hara, K., & Ikeuchi, K. (2003). Polarization-based inverse rendering from a single view. In IEEE international conference on computer vision (Vol. 2, p. 982).

    Chapter  Google Scholar 

  • Rahmann, S. (1999). Inferring 3D scene structure from a single polarization image. In SPIE proceedings on polarization and color techniques in industrial inspection (pp. 22–33).

    Chapter  Google Scholar 

  • Rahmann, S. (2000). Polarization images: a geometric interpretation for shape analysis. In International conference on pattern recognition (Vol. 3, pp. 538–542).

    Google Scholar 

  • Rahmann, S., & Canterakis, N. (2001). Reconstruction of specular surfaces using polarization imaging. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 149–155).

    Google Scholar 

  • Saito, M., Sato, Y., Ikeuchi, K., & Kashiwagi, H. (1999). Measurement of surface orientations of transparent objects using polarization in highlight. Journal of the Optical Society of America A, 16(9), 2286–2293.

    Article  Google Scholar 

  • Schlick, C. (1994). An inexpensive BRDF model for physically-based rendering. Computer Graphics Forum, 13(3), 233–246.

    Article  Google Scholar 

  • Sellmeier, W. (1871). Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen. Annalen der Physik und Chemie, 219(6), 272–282.

    Article  Google Scholar 

  • Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the Institute of Radio Engineers, 37(1), 10–21.

    MathSciNet  Google Scholar 

  • Thilak, V., Voelz, D. G., & Creusere, C. D. (2007). Polarization-based index of refraction and reflection angle estimation for remote sensing applications. Applied Optics, 46(30), 7527–7536.

    Article  Google Scholar 

  • Torrance, K., & Sparrow, E. (1967). Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57(9), 1105–1112.

    Article  Google Scholar 

  • Torrance, K. E., Sparrow, E. M., & Birkebak, R. C. (1966). Polarization, directional distribution, and off-specular peak phenomena in light reflected from roughened surfaces. Journal of the Optical Society of America, 56, 916–924.

    Article  Google Scholar 

  • Wolff, L. B. (1989). Using polarization to separate reflection components. In Computer vision and pattern recognition (pp. 363–369).

    Google Scholar 

  • Wolff, L. B. (1990). Polarization-based material classification from specular reflection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(11), 1059–1071.

    Article  Google Scholar 

  • Wolff, L. B. (1994). Diffuse-reflectance model for smooth dielectric surfaces (No. 11, pp. 2956–2968).

    Google Scholar 

  • Wolff, L. B., & Boult, T. E. (1991). Constraining object features using a polarization reflectance model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 635–657.

    Article  Google Scholar 

  • Zhu, Q., & Shi, J. (2006). Shape from shading: recognizing the mountains through a global view. In Computer vision and pattern recognition (pp. 1839–1846).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Robles-Kelly, A., Huynh, C.P. (2013). Shape and Refractive Index from Polarisation. In: Imaging Spectroscopy for Scene Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4652-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4652-0_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4651-3

  • Online ISBN: 978-1-4471-4652-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics