Fuzzy Logic Approaches

  • Marius Paulescu
  • Eugenia Paulescu
  • Paul Gravila
  • Viorel Badescu
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Artificial Intelligence (AI) is a branch of computer science that aims to create intelligent machines. A less ambitious but attainable approach deals with programing computers for finding solutions to complex problems in a way that simulates human-like logic instead of binary logic. This generally involves borrowing characteristics of human intelligence and integrating them as computer algorithms. First, several AI approaches are recapitulated. Second, artificial neural networks, probably the most used AI technique, are reviewed. Then, fuzzy logic, a method with great potential in forecasting solar irradiance, is introduced. The chapter core consists of two fuzzy models, one for nowcasting solar irradiance and another one for forecasting solar irradiation at daily lag. The discussion is focused on both model construction and accuracy.

Keywords

Entropy Attenuation Ozone Turkey Autocorrelation 

References

  1. Boata St R, Gravila P (2012) Functional fuzzy approach for forecasting daily global solar irradiation. Atmos Res 112:78–88Google Scholar
  2. Brabec M, Badescu V, Paulescu M (2012) Nowcasting sunshine number by using logistic modeling (submitted)Google Scholar
  3. Cao S, Cao J (2005) Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis. Appl Therm Eng 25:161–172CrossRefGoogle Scholar
  4. Cao J, Lin X (2008) Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique. Eng Appl Artif Intell 21:1255–1263MathSciNetCrossRefGoogle Scholar
  5. Chen C, Duan S, Cai T, Liu B (2011) Online 24 h solar power forecasting based on weather type classification using artificial neural network. Sol Energy 85(11):2856–2870CrossRefGoogle Scholar
  6. Donvlo ASS, Jervase JA, Al-Lawati A (2002) Solar radiation estimation using artificial neural networks. Appl Energy 74:307–319Google Scholar
  7. Gomez V, Casanova A (2003) Fuzzy modeling of solar irradiance on inclined surfaces. Sol Energy 75:307–315CrossRefGoogle Scholar
  8. Hocaoglu FO, Gerek ON, Kurban M (2008) Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks. Sol Energy 82:714–726CrossRefGoogle Scholar
  9. Izgi E, Oztopal A, Yerli B, Kaymak MK, Sahin AD (2012) Short–mid-term solar power prediction by using artificial neural networks. Sol Energy 86(2):725–733CrossRefGoogle Scholar
  10. Kalogirou S (ed) (2007) Artificial intelligence in energy and renewable energy systems. Nova Science, New YorkGoogle Scholar
  11. Kemmoku Y, Orita S, Nakagawa S, Sakakibara T (1999) Daily insolation forecasting using a multi-stage neural network. Sol Energy 66:193–199CrossRefGoogle Scholar
  12. Lopez G, Batlles FJ, Tovar-Pescador J (2005) Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy 30:1675–1684CrossRefGoogle Scholar
  13. McCarthy J (1958) Programs with Common Sense. In: Proceedings of teddington conference on the mechanization of thought processes. Available at http://library.thinkquest.org/05aug/01158/mccarthy.html
  14. Mason JC, Handscomb DC (2003) Chebyshev polynomials. Chapman & Hall, CRC Boca RatonMATHGoogle Scholar
  15. Mellit A (2008) Artificial intelligence technique for modelling and forecasting of solar radiation data: a review. Int J Artif Intel Soft Comput 1(1):52–76CrossRefGoogle Scholar
  16. Mellit A, Kalogirou SA (2008) Artificial intelligence techniques for photovoltaic applications: a review. Prog Energy Combust Sci 34:547–632CrossRefGoogle Scholar
  17. Mellit A, Benghanem M, Kalogirou SA (2006) An adaptive wavelet network model for forecasting daily total solar radiation. Appl Energy 83:705–722Google Scholar
  18. Mellit A, Kalogirou SA, Shaari S, Salhi H, Hadj Arab A (2008) Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: application for sizing a stand-alone PV system. Renewable Energy 33:1570–1590CrossRefGoogle Scholar
  19. Mellit A, Pavan AM (2010) A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at trieste. Italy Sol Energy 84(5):807–821CrossRefGoogle Scholar
  20. Mihalakakou G, Santamouris M, Asimakopoulos DN (2000) The total solar radiation time series simulation in Athens, using neural networks. Theor Appl Climatol 66:185–197CrossRefGoogle Scholar
  21. Mohandes M, Rehman S, Halawani TO (1998) Estimation of global solar radiation using artificial neural networks. Renewable Energy 14:179–184CrossRefGoogle Scholar
  22. Mubiru J, Banda EJKB (2008) Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy 82(2):181–187CrossRefGoogle Scholar
  23. Paoli C, Voyant C, Muselli M, Nivet M-L (2010) Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 84(12):2146–2160CrossRefGoogle Scholar
  24. Passino KM, Yurkovich S (1998) Fuzzy Control. Adison Wesley Longman. Available at www.ece.osu.edu/~passino/books.html
  25. Paulescu M, Gravila P, Tulcan-Paulescu E (2008) Fuzzy logic algorithms for atmospheric transmittances of use in solar energy estimations. Energy Convers Manage 49:3691CrossRefGoogle Scholar
  26. Paulescu M, Badescu V, Brabec M (2012) Tools for grid and pv plant operators: nowcasting of passing clouds. Submitted to JournalGoogle Scholar
  27. Perez R, Ineichen P, Seals R, Stewart R, Meniccucci D (1987) A new simplified version of the of the Perrez diffuse irradiance model for tilted surfaces. Sol Energy 39:221–231CrossRefGoogle Scholar
  28. Perez R, Ineichen P, Seals R, Michalsky J, Stewart R (1990) Modeling daylight availability and irradiance components from direct and global irradiance. Sol Energy 44:271–289CrossRefGoogle Scholar
  29. Qin J, Chen Z, Yang K, Liang S, Tang W (2011) Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Appl Energy 88:2480–2489CrossRefGoogle Scholar
  30. Reddy KS, Manish R (2003) Solar resource estimation using artificial neural networks and comparison with other correlation models. Energy Convers Manage 44:2519–2530CrossRefGoogle Scholar
  31. Sen Z (1998) Fuzzy algorithm for estimation of solar irradiation from sunshine duration. Sol Energy 63:39–49CrossRefGoogle Scholar
  32. Senjyu T, Hayashi D, Urasaki N, Funabashi T (2006) Optimum configuration for renewable generating systems in residence using genetic algorithm. IEEE Trans Energy Convers 21(1):459–467CrossRefGoogle Scholar
  33. Sfetsos A, Coonick AH (2000) Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Sol Energy 68(2):169–178CrossRefGoogle Scholar
  34. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132CrossRefMATHGoogle Scholar
  35. Tulcan-Paulescu E, Paulescu M (2008) Fuzzy modeling of solar irradiation using air temperature data. Theor Appl Climatol 91:181–192CrossRefGoogle Scholar
  36. Tymvios FS, Jacovides CP, Michaelides SC, Scouteli C (2005) Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation. Sol Energy 78(6):752–762CrossRefGoogle Scholar
  37. Tymvios FS, Michaelides SC, Skouteli CS (2008) Estimation of surface solar radiation with artificial neural networks. In: Badescu V (ed) Modeling solar radiation at the Earth surface. Springer, BerlinGoogle Scholar
  38. Yang HX, Zhou W, Lu L, Fang ZH (2008) Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm. Sol Energy 82(4):354–367CrossRefGoogle Scholar
  39. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353MathSciNetCrossRefMATHGoogle Scholar
  40. Zarzalejo LF, Ramirez LJ (2005) Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index. Energy 30:1685–1697CrossRefGoogle Scholar
  41. Zimmermann HJ (1996) Fuzzy set theory and its application, 3rd edn. Kluwer Academic; Norwell, MAGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Marius Paulescu
    • 1
  • Eugenia Paulescu
    • 1
  • Paul Gravila
    • 1
  • Viorel Badescu
    • 2
    • 3
  1. 1.Physics DepartmentWest University of TimisoraTimisoraRomania
  2. 2.Candida Oancea InstitutePolytechnic University of BucharestBucharestRomania
  3. 3.Romanian AcademyBucharestRomania

Personalised recommendations