Material, Friction and Contact Characterization

  • C. V. Nielsen
  • W. Zhang
  • L. M. Alves
  • N. Bay
  • P. A. F. Martins
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Awareness and understanding of the basic procedures to determine the flow stress, the frictional response and the electric and thermal contact resistances under different conditions of strain-rate and temperature are fundamental for improving the quality of data to be inserted in finite element computer programs. Because accuracy and reliability of numerical simulations are critically dependent on input data, the following sections will provide a brief overview of the most widespread experimental techniques that are utilized for material, friction and contact characterization.


Flow Stress Contact Resistance Flow Curve Contact Resistivity Thermal Contact Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lange K (1984) Umformtechnik I. Handbuch für Industrie und Wissenschaft, 2nd edn. Springer-Verlag, Berlin (In German)Google Scholar
  2. 2.
    Gunasekera J, Chitty E, Kiridena V (1989) Analytical and physical modelling of the buckling behavior of high aspect ratio billets. Ann CIRP 38:249–252Google Scholar
  3. 3.
    Czichos H, Saito T, Smith L (2006) Handbook of materials measurements methods. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Alves LM, Nielsen CV, Martins PAF (2011) Revisiting the fundamentals and capabilities of the stack compression test. Exp Mech 51:1565–1572CrossRefGoogle Scholar
  5. 5.
    House JW (2000) Testing machines and strain sensors in mechanical testing and evaluation. ASM International, Materials Park, pp 225–227Google Scholar
  6. 6.
    Pawelski O (1967) Über das stauchen von holzylindern und seine eignung zur bestimmung der formänderungsfestigkeit dünner bleche. Arch Eisenhüttenwes 38:437–442 (In German)Google Scholar
  7. 7.
    Huml P, Lindegren M (1992) Properties of cold-formed metal products. Ann CIRP 41(1):267–270Google Scholar
  8. 8.
    Tekkaya AE, Martins PAF (2009) Accuracy, reliability and validity of finite element analysis in metal forming: a user’s perspective. Eng Comput 26(8):1026–1055Google Scholar
  9. 9.
    Doege E, Meyer-Nolkemper H, Saeed I (1986) Fliesskurvenatlas metallischer Werkstoffe. Hanser Verlag, München Wien, ISBN 3-446-14427-7 (In German)Google Scholar
  10. 10.
    Wanheim T, Bay N (1978) A model for friction in metal forming processes. Ann CIRP 27(1):189–194Google Scholar
  11. 11.
    Bay N (1987) Friction stress and normal stress in bulk metal–forming processes. J Mech Work Technol 14:203–223CrossRefGoogle Scholar
  12. 12.
    Song Q, Zhang W, Bay N (2005) An experimental study determines the electrical contact resistance in resistance welding. Weld J 84(5):73s–76sGoogle Scholar
  13. 13.
    Zhang W (2003) Design and implementation of software for resistance welding process simulations. Trans J Mater Manuf 112(5):556–564Google Scholar
  14. 14.
    Bowden FP, Tabor D (1950) The fabrication and lubrication of solids. Oxford University Press, OxfordGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • C. V. Nielsen
    • 1
  • W. Zhang
    • 2
  • L. M. Alves
    • 3
  • N. Bay
    • 1
  • P. A. F. Martins
    • 3
  1. 1.Department of Mechanical EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.SWANTEC Software and EngineeringKongens LyngbyDenmark
  3. 3.Instituto Superior Técnico, IDMEC, Technical University of LisbonLisboaPortugal

Personalised recommendations