Vehicle Mechatronic Systems

  • Rochdi Merzouki
  • Arun Kumar Samantaray
  • Pushparaj Mani Pathak
  • Belkacem Ould Bouamama
Chapter

Abstract

In this chapter, we develop models for various mechatronic components used in modern road vehicles. To start with, we develop a complete vehicle model by integrating its various basic component models like vehicle body, tires, wheels, engine, clutch, gear box, differential, transmission system, suspension, steering, etc. Mechatronic implementations of functionalities of some of these elements are considered next. We consider various active and semi-active suspensions, anti-roll bar, power steering, antilock and regenerative braking systems, and automatic transmission systems. In addition to these, we consider the hybrid vehicle system with power split device (PSD), torque converter, and fuel cells. Detailed models of two types of fuel cells, namely solid oxide fuel cell and proton exchange membrane fuel cell, along with their control circuits are developed at the end of the chapter. This chapter showcases the application of bond graph modeling to chemical kinetics and thermodynamics (engine, fuel cells, heat exchanger, etc.) as part of complex mechatronic systems.

Keywords

Zirconia Platinum Mold Ozone Rubber 

References

  1. 1.
    V. Aesoy, H. Engja, L.A. Skarboe, Fuel injection system design, analysis and testing using bond graph as an efficient modelling tool. SAE Spec. Publ. 1205, 159–168 (1996)Google Scholar
  2. 2.
    P. Aguiar, C.S. Adjiman, N.P. Brandon, Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell I. model-based steady-state performance. J. Power Sources 138, 120–136 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Alirand, F. Gallo, Development of a powerful drive line library in amesim to model transmission systems. in Global Powertrain Congress, Advanced Transmission Design and Performance (Stuttgart, Germany, 1999), pp. 66–74Google Scholar
  4. 4.
    D. Assanis, W. Bryzik, N. Chalhoub, Z. Filipi, N. Henein, D. Jung, X. Liu, L. Louca, J. Moskwa, S. Munns, J. Overholt, P. Papalambros, S. Riley, Z. Rubin, P. Sendur, J. Stein, G. Zhang, Integration and use of diesel engine, driveline and vehicle dynamics models for heavy duty truck simulation. SAE Paper 1999–01-0970 (1999)Google Scholar
  5. 5.
    R.S. Benson, Advanced Engineering Thermodynamics, 2nd ed. (Pergamon Press, Oxford, 1977)Google Scholar
  6. 6.
    T.K. Bera, K. Bhattacharyya, A.K. Samantaray, Bond graph model based evaluation of a sliding mode controller for combined regenerative and antilock braking system. Proc. ImechE Part I J. Syst. Contr. Eng. 225(7), 918–934 (2011)Google Scholar
  7. 7.
    T.K. Bera, A.K. Samantaray, R. Karmakar, Bond graph modelling of planar prismatic joints. Mech. Mach. Theor. 49(12), 2–20 (2012)CrossRefGoogle Scholar
  8. 8.
    T.K. Bera, K. Bhattacharya, A.K. Samantaray, Evaluation of antilock braking system with an integrated model of full vehicle system dynamics. Simul. Model. Pract. Theor. 19(10), 2131–2150 (2011)CrossRefGoogle Scholar
  9. 9.
    J.O’M Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry: Fundamentals of Electrodics, 2nd edn, (Kluwer Academic/Plenum Publishers, New York, 1998)Google Scholar
  10. 10.
    A.M. Bos, Modelling Multibody Systems in Terms of Multibond Graphs. Ph.D. thesis, University of Twente, 1986Google Scholar
  11. 11.
    P.C. Breedveld, Physical Systems Theory in terms of Bond Graphs. Ph.D. thesis, Twente University, Enschede, 1984Google Scholar
  12. 12.
    L.T. Brown, D. Hrovat, Transmission clutch loop transfer control. U.S. Patent 4,790,419, 1988Google Scholar
  13. 13.
    K. Bruun, Bond Graph Modelling of Fuel Cells for Marine Power Plants. Ph.D. thesis, Norwegian University of Science and Technology, Department of Marine Technology, 2009Google Scholar
  14. 14.
    M. Burckhardt, Antiskid systems compared. Oelhydraul. Pneum. 28(8), 489–491 (1984)Google Scholar
  15. 15.
    M. Burckhardt, E.C. Glasner von Ostenwall, H. Krohn, Capabilities and limits of antilock systems (moeglichkeiten und grenzen von antiblockiersystemen). ATZ Automobiltechnische Zeitschrift 77(1), 13–18 (1975)Google Scholar
  16. 16.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  17. 17.
    R.M. Chalasani, Ride performance potential of active suspension systems—part I: Simplified analysis based on a quarter-car model. in Proceedings of 1986 ASME Winter Annual Meeting (Los Angeles, CA, 1986), p. 1986Google Scholar
  18. 18.
    W.H. Crouse, D.L. Anglin, Automotive Mechanics (TATA McGraw-Hill, New Delhi, 1995)Google Scholar
  19. 19.
    W. Drozdz, H.B. Pacejka, Development and validation of a bond graph handling model of an automobile. J. Franklin Inst. 328(5/6), 941–957 (1991)CrossRefGoogle Scholar
  20. 20.
    Hallvard Engja, Bond graph model of a reciprocating compressor. J. Franklin Inst. 319(1–2), 115–124 (1985)Google Scholar
  21. 21.
    Tulga Ersal, Hosam K. Fathy, Jeffrey L. Stein, Structural simplification of modular bond-graph models based on junction inactivity. Simul. Model. Pract. Theor. 17(1), 175–196 (2009)CrossRefGoogle Scholar
  22. 22.
    P.J. Feenstra, A library of port-based thermo-fluid submodels, MS thesis, University of Twente, 2000Google Scholar
  23. 23.
    A.A. Franco, P. Schott, C. Jallut, B. Maschke, Multi-scale bond graph model of the electrochemical dynamics in a fuel cell. in Proceedings of 5th MATHMOD Conference (Vienna, Austria, 2005)Google Scholar
  24. 24.
    W. Gao, C. Mi, A. Emadi, Modeling and simulation of electric and hybrid vehicles. Proc. IEEE 95(4), 729–745 (2007)CrossRefGoogle Scholar
  25. 25.
    T.D. Gillespie, Fundamentals of vehicle dynamics. Soc. Automot. Eng. 1361–1370 (1992). ISBN: 1560911999Google Scholar
  26. 26.
    J.J. Granda, The role of bond graph modeling and simulation in mechatronics systems: an integrated software tool: CAMP-G. MATLAB-SIMULINK. Mechatron. 12, 1271–1295 (2002)CrossRefGoogle Scholar
  27. 27.
    G.J. Heydinger, M.K. Salaani, W.R. Garrott, P.A. Grygier, Vehicle dynamics modelling for the national advanced driving simulator. Proc. Inst. Mech. Eng. Part D J. Automobile Eng. 216(4), 307–318 (2002)Google Scholar
  28. 28.
    D. Hrovat, J. Asgari, M. Fodor, Mechatronic Systems Techniques and Applications of Transportation and Vehicular Systems, vol. 2, chapter Automotive Mechatronic Systems, (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–98Google Scholar
  29. 29.
    F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 4th edn. (Wiley, New York, 1996)Google Scholar
  30. 30.
    V. Ivanovic, J. Deur, Z. Herold, M. Hancock, F. Assadian, Modelling of electromechanically actuated active differential wet-clutch dynamics. Proc. IMechE Part D J. Automobile Eng. 226, 433–456 (2012)Google Scholar
  31. 31.
    D. Karnopp, Bond graph for vehicle dynamics. Veh. Syst. Dyn. 5, 171–184 (1976)CrossRefGoogle Scholar
  32. 32.
    D. Karnopp, Pseudo bond graphs for thermal energy transport. Trans. ASME J. Dyn. Syst. Meas. Contr. 100(3), 165–169 (1978)MathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Measur. Contr. Trans. ASME 107(1), 100–103 (1985)CrossRefGoogle Scholar
  34. 34.
    D. Karnopp, Modelling and simulation of adaptive vehicle air suspensions with pseudo bond graphs in CAMP and ACSL. in Proceedings of 11th IMACS World Congress on System Simulation and Scientific Computation (Oslo, Norway, 1985)Google Scholar
  35. 35.
    D. Karnopp, Bond graph models for electrochemical energy storage: electrical, chemical and thermal effects. J. Franklin Inst. 327(6), 983–992 (1990)CrossRefGoogle Scholar
  36. 36.
    D. Karnopp, Design principles for vibration control systems using semi-active dampers. Trans. ASME J. Dyn. Syst. Measur. Contr. 112(3), 448–455 (1990)CrossRefGoogle Scholar
  37. 37.
    D. Karnopp, Power requirements for vehicle suspension systems. Veh. Syst. Dyn. 21(2), 65–71 (1992)MathSciNetCrossRefGoogle Scholar
  38. 38.
    D. Karnopp, Active and semi-active vibration isolation. J. Mech. Des. 117B, 177–185 (1995)CrossRefGoogle Scholar
  39. 39.
    D.C. Karnopp, State variables and pseudo-bond graphs for compressible thermo-fluid systems. J. Dyn. Syst. Measur. Contr. 101(3), 201–204 (1979)CrossRefGoogle Scholar
  40. 40.
    K. Li, J.A. Misener, K. Hedrick, On-board road condition monitoring system using slip-based tyre-road friction estimation and wheel speed signal analysis. Proc. IMechE J. Multi-body Dyn. 221, 129–146 (2007)Google Scholar
  41. 41.
    P.Y. Li, R.F. Ngwompo, Power scaling bond graph approach to the passification of mechatronic systems—with application to electrohydraulic valves. J. Dyn. Syst. Measur. Contr. 127(4), 633–641 (2005)CrossRefGoogle Scholar
  42. 42.
    R.G. Longoria, A. Al-Sharif, C.B. Patil, Scaled vehicle system dynamics and control: a case study in anti-lock braking. Int. J. Veh. Auton. Syst. 2(1/2), 18–39 (2004)CrossRefGoogle Scholar
  43. 43.
    L.S. Louca, D.G. Rideout, J.L. Stein, G.M. Hulbert, Generating proper dynamic models for truck mobility and handling. Int. J. Heavy Veh. Syst. 11(3–4), 209–236 (2004)Google Scholar
  44. 44.
    L.S. Louca, J.L. Stein, D.G. Rideout, Integrated proper vehicle modeling and simulation using a bond graph formulation. in Proceedings of the 2001 International Conference on Bond Graph Modeling (ICBGM’01), vol. 33, No. 1, pp. 339–345 (2010)Google Scholar
  45. 45.
    D. Margolis, Bond graph for vehicle stability analysis. Int. J. Veh. Des. 5, 427–437 (1984)Google Scholar
  46. 46.
    D. Margolis, J. Asgari, Multipurpose models of vehicle dynamics for controller design. SAE Technical Paper 911927 (1991). doi:  10.4271/911927
  47. 47.
    D. Margolis, T. Shim, A bond graph model incorporating sensors, actuators, and vehicle dynamics for developing controllers for vehicle safety. J. Franklin Inst. 338(1), 21–34 (2001)MATHCrossRefGoogle Scholar
  48. 48.
    D.L. Margolis, Modeling of two-stroke internal combustion engine dynamics using the bond graph technique. SAE Technical Paper 2263–2275 (1975). doi:  10.4271/750860
  49. 49.
    W. Marquis-Favre, E. Bideaux, O. Mechin, S. Scavarda, F. Guillemard, M. Ebalard, Mechatronic bond graph modelling of an automotive vehicle. Math. Comput. Model. Dyn. Syst. 12(2–3), 189–202 (2006)Google Scholar
  50. 50.
    R. Merzouki, B. Ould Bouamama M.A. Djeziri, and M. Bouteldja., Modelling and estimation of tire-road longitudinal impact efforts using bond graph approach. Mechatronics 17(2–3), 93–108 (2007)Google Scholar
  51. 51.
    H. Mirzaeinejad, M. Mirzaei, A novel method for non-linear control of wheel slip in anti-lock braking systems. Contr. Eng. Pract. 18(8), 918–926 (2010)CrossRefGoogle Scholar
  52. 52.
    A. Mukherjee, R. Karmakar, A.K. Samantaray, Bond Graph in Modeling, Simulation and Fault Identification (CRC Press, USA, 2006), ISBN: 978-8188237968, 1420058657Google Scholar
  53. 53.
    T. Nakayama, E. Suda, The present and future of electric power steering. Int. J. Veh. Des. 15(3–5), 243–254 (1994)Google Scholar
  54. 54.
    L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)Google Scholar
  55. 55.
    M. Oudghiri, M. Chadli, A.E. Hajjaji, Robust fuzzy sliding mode control for antilock braking system. Int. J. Sci. Tech. Autom. Contr. 1(1), 13–28 (2007)Google Scholar
  56. 56.
    B. Ozdalyan, Development of a slip control anti-lock braking system model. Int. J. Automot. Technol. 9(1), 71–80 (2008)CrossRefGoogle Scholar
  57. 57.
    H.B. Pacejka, Modelling complex vehicle systems using bond graphs. J. Franklin Inst. 319(1/2), 67–81 (1985)MATHCrossRefGoogle Scholar
  58. 58.
    H.B. Pacejka, Tyre and Vehicle Dynamics (Butterworth-Heinemann, Elsevier, UK, 2006)Google Scholar
  59. 59.
    P.M. Pathak, A.K. Samantaray, R. Merzouki, B. Ould-Bouamama, Reconfiguration of directional handling of an autonomous vehicle. in IEEE Region 10 Colloquium and 3rd International Conference on Industrial and Information Systems, ICIIS 2008, Art. no. 4798408 (2008). doi:  10.1109/ICIINFS.2008.4798408
  60. 60.
    C. Peraza, J.G. Diaz, F.J. Arteaga-Bravo, C.C. Villanueva, F. Gonzalez-Longatt, Modeling and simulation of PEM fuel cell with bond graph and 20sim. in Proceedings of the American Control Conference, Art. no. 4587303, pp. 5104–5108 (2008)Google Scholar
  61. 61.
    A.S. Perelson, Network thermodynamics, an overview. Biophys. J. 15, 667–685 (1975)CrossRefGoogle Scholar
  62. 62.
    R. Rajamani, Vehicle Dynamics and Control (Springer, New York, 2006)MATHGoogle Scholar
  63. 63.
    R. Saisset, G. Fontes, C. Turpin, S. Astier, Bond graph model of a PEM fuel cell. J. Power Sources 156(1), 100–107 (2006)Google Scholar
  64. 64.
    M.K. Salaani, G.J. Heydinger, Powertrain and brake modeling of the 1994 Ford Taurus for the national advanced driving simulator. SAE Special Publ. 1361, 131–143 (1998)Google Scholar
  65. 65.
    A.K. Samantaray, Modeling and analysis of preloaded liquid spring/damper shock absorbers. Simul. Model. Pract. Theor. 17(1), 309–325 (2009)CrossRefGoogle Scholar
  66. 66.
    A.K. Samantaray, B. Ould Bouamama, Model-Based Process Supervision—A Bond Graph Approach (Springer, London, 2008)Google Scholar
  67. 67.
    S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Oxford, 2003)Google Scholar
  68. 68.
    H.T. Szostak, W.R. Allen, T.J. Rosenthal, Analytical modeling of driver response in crash avoidance maneuvering. volume II: An interactive model for driver/vehicle simulation. Technical Report, U.S. Department of Transportation Report NHTSA DOT HS-807-271, 1988Google Scholar
  69. 69.
    J.U. Thoma, B. Ould Bouamama, Modelling and Simulation in Thermal and Chemical Engineering. Bond Graph Approach (Springer, Telos, 2000)Google Scholar
  70. 70.
    P. Vijay, Modelling, Simulation and Control of a Solid Oxide Fuel Cell System: A Bond Graph Approach Ph.D. thesis, (Indian Institute of Technology, Kharagpur, India, 2009)Google Scholar
  71. 71.
    P. Vijay, A.K. Samantaray, A. Mukherjee, Bond graph model of a solid oxide fuel cell with a C-field for mixture of two gas species. Proc. IMechE Part I J. Syst. Contr. Eng. 222(4), 247–259 (2008)CrossRefGoogle Scholar
  72. 72.
    P. Vijay, A.K. Samantaray, A. Mukherjee, A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell. Mechatronics 19(4), 489–502 (2009)CrossRefGoogle Scholar
  73. 73.
    P. Vijay, A.K. Samantaray, A. Mukherjee, On the rationale behind constant fuel utilization control of solid oxide fuel cells. Proc. IMechE Part I J. Syst. Contr. Eng. 223(2), 229–252 (2009)CrossRefGoogle Scholar
  74. 74.
    P. Vijay, A.K. Samantaray, A. Mukherjee, Constant fuel utilization operation of a SOFC system: An efficiency viewpoint. Trans. ASME J. Fuel Cell Sci. Technol. 7(4), 041011 (7 pages) (2010)Google Scholar
  75. 75.
    P. Vijay, A.K. Samantaray, A. Mukherjee, Parameter estimation of chemical reaction mechanisms using thermodynamically consistent kinetic models. Comput. Chem. Eng. 34(6), 866–877 (2010)CrossRefGoogle Scholar
  76. 76.
    H. Yeo, S. Hwang, H. Kim, Regenerative braking algorithm for a hybrid electric vehicle with CVT ratio control. IMechE J. Automobile Engineering 220, 1589–1600 (2006)CrossRefGoogle Scholar
  77. 77.
    M.W. Zemansky, D.H. Dittman, Heat and Thermodynamics (McGraw-Hill, Singapore, 1997)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rochdi Merzouki
    • 1
  • Arun Kumar Samantaray
    • 2
  • Pushparaj Mani Pathak
    • 3
  • Belkacem Ould Bouamama
    • 1
  1. 1.Technologies de Lille (USTL), Ecole Polytechnique de LilleUniversité des Sciences etVilleneuve D’Ascq CXFrance
  2. 2.Dept. Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia
  3. 3.Dept.Mechanical & Industrial EngineeringIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations