Skip to main content

Abstract

This chapter studies Monte Carlo and quasi-Monte Carlo methods for integration, optimization, and probability and expected value estimation. The Monte Carlo method has been widely used for simulations of various physical and mathematical systems and has a very long history that began in 1949 with the seminal paper of Metropolis and Ulam. The name Monte Carlo probably originated from the famous casino in Monaco and reflects the random and repetitive nature of the process, which is similar to gambling in casinos. The quasi-Monte Carlo method is more recent and may be regarded as a deterministic version of Monte Carlo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The semi-open unit cube is defined as [0,1)n≐{x∈ℝn:x i ∈[0,1), i=1,…,n}.

References

  1. Alpcan T, Başar T, Tempo R (2005) Randomized algorithms for stability and robustness analysis of high speed communication networks. IEEE Trans Neural Netw 16:1229–1241

    Article  Google Scholar 

  2. Au SK, Beck JL (2001) Estimation of small failure probability in high dimensions simulation. Probab Eng Mech 16:263–277

    Article  Google Scholar 

  3. Brooks SH (1958) A discussion of random methods for seeking maxima. Oper Res 6:244–251

    Article  MathSciNet  Google Scholar 

  4. Ching J, Au SK, Beck JL (2005) Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting. Comput Methods Appl Mech Eng 194:1557–1579

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis PJ, Rabinowitz P (1984) Methods of numerical integration. Academic Press, New York

    MATH  Google Scholar 

  6. Faure H (1982) Discrépance de suites associées à un système de numération (en dimension s). Acta Arith 41:337–351

    MathSciNet  MATH  Google Scholar 

  7. Gentle JE (1998) Random number generation and Monte Carlo methods. Springer, New York

    MATH  Google Scholar 

  8. Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math 2:84–90. Berichtigung, ibid., 2:196, 1960

    Article  MathSciNet  Google Scholar 

  9. Hlawka E (1954) Funktionen von beschränkter variation in der Theorie der Gleichverteilung. Ann Mat Pura Appl 61:325–333

    MathSciNet  Google Scholar 

  10. Koksma JF (1942–1943) Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1. Math B (Zutphen) 11:7–11

    MathSciNet  Google Scholar 

  11. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge. Available at http://planning.cs.uiuc.edu/

    Book  MATH  Google Scholar 

  12. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller A, Teller H (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    Article  Google Scholar 

  13. Metropolis N, Ulam SM (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341

    Article  MathSciNet  MATH  Google Scholar 

  14. Niederreiter H (1987) Point sets and sequences with small discrepancy. Monatshefte Math 104:273–337

    Article  MathSciNet  MATH  Google Scholar 

  15. Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  16. Niederreiter H (2003) Some current issues in quasi-Monte Carlo methods. J Complex 23:428–433

    Article  MathSciNet  Google Scholar 

  17. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes. McGraw-Hill, New York

    Google Scholar 

  18. Rubinstein RY, Kroese DP (2008) Simulation and the Monte-Carlo method. Wiley, New York

    MATH  Google Scholar 

  19. Sobol’ IM (1967) The distribution of points in a cube and the approximate evaluation of integrals. Ž Vyčisl Mat Mat Fiz 7:784–802 (in Russian)

    MathSciNet  Google Scholar 

  20. Sukharev AG (1971) Optimal strategies of the search for an extremum. Ž Vyčisl Mat Mat Fiz 11:910–924 (in Russian)

    Google Scholar 

  21. Traub JF, Werschulz AG (1998) Complexity and information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. van der Corput JG (1935) Verteilungsfunktionen i, ii. Proc K Ned Akad Wet 38(B):813–82110581066

    Google Scholar 

  23. Vidyasagar M (2002) Learning and generalization: with applications to neural networks, 2nd edn. Springer, New York

    Google Scholar 

  24. Zhigljavsky AA (1991) Theory of global random search. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tempo, R., Calafiore, G., Dabbene, F. (2013). Monte Carlo Methods. In: Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4610-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4610-0_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4609-4

  • Online ISBN: 978-1-4471-4610-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics