Skip to main content

Minimum-Variance Assessment of Multivariable Control Systems

  • Chapter
  • 1977 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Since the loops in multivariable control systems can be coupled, a multivariable control strategy can further reduce process variations, thus, only multivariable assessment can provide the right measure of performance improvement potential in the general case. In this chapter, methods for multivariable minimum-variance benchmarking are presented: it is shown how to use the interactor matrix to derive the multivariable variant of MVC; then the FCOR algorithm as the most known algorithm for assessing MIMO control systems based on routine operating data and the knowledge of the interactor matrix is presented. As the interactor matrix is hard to determine, and thus control assessment based on it is difficult, an assessment procedure that does not require the interactor matrix is proposed. Numerous examples are given to illustrate how the methods work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The basic algorithms were implemented by Martina Thormann and Heinrich Ratjen, see Ratjen (2006).

References

  • Bittanti S, Colaneri P, Mongiovi M (1994) The spectral interactor matrix for the singular Riccati equation. In: Proc IEEE confer decision control, Orlando, USA, vol 3, pp 2165–2169

    Google Scholar 

  • Ettaleb L (1999) Control loop performance assessment and oscillation detection. PhD thesis, University of British, Columbia, Canada

    Google Scholar 

  • Goodwin GC, Sin K (1984) Adaptive filtering, prediction and control. Prentice Hall, New York

    MATH  Google Scholar 

  • Harris T, Boudreau F, MacGregor JF (1996a) Performance assessment using of multivariable feedback controllers. Automatica 32:1505–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Huang B, Shah SL (1998) Practical issues in multivariable feedback control performance assessment. J Process Control 8:421–430

    Article  Google Scholar 

  • Huang B, Shah SL (1999) Performance assessment of control loops. Springer, Berlin

    Book  Google Scholar 

  • Huang B, Shah SL, Kwok EK (1997a) Good, bad or optimal? Performance assessment of multivariable processes. Automatica 33:1175–1183

    Article  MathSciNet  MATH  Google Scholar 

  • Huang B, Shah SL, Kwok EK, Zurcher J (1997b) Performance assessment of multivariate control loops on a paper-machine headbox. Can J Chem Eng 75:134–142

    Article  Google Scholar 

  • Huang B, Ding SX, Qin J (2005a) Closed-loop subspace identification: an orthogonal projection approach. J Process Control 15:53–66

    Article  Google Scholar 

  • Huang B, Ding SX, Thornhill N (2005b) Practical solutions to multivariable feedback control performance assessment problem: reduced a priori knowledge of interactor matrices. J Process Control 15:573–583

    Article  Google Scholar 

  • Huang B, Ding SX, Thornhill N (2006) Alternative solutions to multi-variate control performance assessment problems. J Process Control 16:457–471

    Article  Google Scholar 

  • Ko B-S, Edgar TF (2001b) Performance assessment of multivariable feedback control systems. Automatica 37:899–905

    Article  MathSciNet  MATH  Google Scholar 

  • Paplinski A, Rogozinski M (1990) Right nilpotent interactor matrix and its application to multivariable stochastic control. In: Proc Amer control confer, San Diego, USA, vol 1, pp 494–495

    Google Scholar 

  • Peng Y, Kinnaert M (1992) Explicit solution to the singular lq regulation problem. IEEE Trans Autom Control 37:633–636

    Article  MathSciNet  MATH  Google Scholar 

  • Ratjen H (2006) Entwicklung und Untersuchung von Verfahren zur Bewertung der Regelgüte bei Regelkreisen für MIMO-Systeme. Internal Tech report, University of Cologne/Germany, Subcontractor of BFI within the EU Project AUTOCHECK

    Google Scholar 

  • Rogozinski M, Paplinski A, Gibbard M (1987) An algorithm for calculation of nilpotent interactor matrix for linear multivariable systems. IEEE Trans Autom Control 32:234–237

    Article  MathSciNet  MATH  Google Scholar 

  • Shah SL, Mohtadi C, Clarke D (1987) Multivariable adaptive control without a priori knowledge of the delay matrix. Syst Control Lett 9:295–306

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiligiannis C, Svoronos S (1989) Dynamic interactors in multivariable process control. Chem Eng Sci 44:2041–2047

    Article  Google Scholar 

  • Wolovich W, Falb P (1976) Invariants and canonical forms under dynamic compensation. SIAM J Control 14:996–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Xia H, Majecki P, Ordys A, Grimble MJ (2006) Performance assessment of MIMO systems based on I/O delay information. J Process Control 16:373–383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Jelali, M. (2013). Minimum-Variance Assessment of Multivariable Control Systems. In: Control Performance Management in Industrial Automation. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-4546-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4546-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4545-5

  • Online ISBN: 978-1-4471-4546-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics