Skip to main content

Quantitative, Qualitative, and Diagnostic Intravascular Ultrasound

  • Chapter
  • First Online:
Textbook of Cardiovascular Intervention

Abstract

Angiography is a shadowgraph technique that visualizes the lumen in multiple projected longitudinal “silhouettes”; it assesses coronary artery disease by comparing stenotic to supposedly “normal” segments. However, atherosclerosis is a diffuse process involving the entire arterial wall, and coronary arteries are complex three-dimensional structures with branch points, tortuous segments, and bends. Intravascular ultrasound (IVUS) provides tomographic imaging to provide a more accurate quantitative and qualitative assessment of the disease process and coronary artery anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mintz GS, Nissen SE, Anderson WD, et al. Standards for the acquisition, measurement, and reporting of intravascular ultrasound studies: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  PubMed  CAS  Google Scholar 

  2. Fitzgerald PJ, St. Goar FG, Connolly AJ, et al. Intravascular ultrasound imaging of coronary arteries. Is three layers the norm? Circulation. 1992;86:154–8.

    Article  PubMed  CAS  Google Scholar 

  3. Isner JM, Donaldson RF, Fortin AH, et al. Attenuation of the media of coronary arteries in advanced atherosclerosis. Am J Cardiol. 1986;58:937–9.

    Article  PubMed  CAS  Google Scholar 

  4. Mallery JA, Tobis JM, Griffith J, et al. Assessment of normal and atherosclerotic arterial wall thickness with an intravascular ultrasound imaging catheter. Am Heart J. 1990;119:1392–400.

    Article  PubMed  CAS  Google Scholar 

  5. Bayturan O, Tuzcu EM, Nicholls SJ, et al. Attenuated plaque at nonculprit lesions in patients enrolled in intravascular ultrasound atherosclerosis progression trials. JACC Cardiovasc Interv. 2009;2:672–8.

    Article  PubMed  Google Scholar 

  6. Mintz GS, Garcia-Garcia HM, Nicholls SJ, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention. 2011;6:1123–30.

    Article  PubMed  Google Scholar 

  7. Hara H, Tsunoda T, Moroi M, et al. Ultrasound attenuation behind coronary atheroma without calcification: mechanism revealed by autopsy. Acute Card Care. 2006;8:110–12.

    Article  PubMed  Google Scholar 

  8. Ito S, Saio M, Suzuki T. Advanced atherosclerotic plaque as potential cause of no-reflow in elective percutaneous coronary intervention: intravascular ultrasound and histological findings. J Invasive Cardiol. 2004;16:669–72.

    PubMed  Google Scholar 

  9. Yamada R, Okura H, Kume T, et al. Histological characteristics of plaque with ultrasonic attenuation: a comparison between intravascular ultrasound and histology. J Cardiol. 2007;50:223–8.

    PubMed  Google Scholar 

  10. Wu X, Maehara A, Mintz GS, et al. Virtual histology intravascular ultrasound analysis of non-culprit attenuated plaques detected by grayscale intravascular ultrasound in patients with acute coronary syndromes. Am J Cardiol. 2010;105:48–53.

    Article  PubMed  Google Scholar 

  11. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995;25:1479–85.

    Article  PubMed  CAS  Google Scholar 

  12. Fujii K, Carlier SG, Mintz GS, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation. J Am Coll Cardiol. 2005;45:995–8.

    Article  PubMed  CAS  Google Scholar 

  13. Liu J, Maehara A, Mintz GS, et al. An integrated TAXUS IV, V, and VI intravascular ultrasound analysis of the predictors of edge restenosis after bare metal or paclitaxel-eluting stents. Am J Cardiol. 2009;15:501–6.

    Article  CAS  Google Scholar 

  14. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  15. Schoenhagen P, Ziada KM, Kapadia SR, et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101:598–603.

    Article  PubMed  CAS  Google Scholar 

  16. von Birgelen C, Klinkhart W, Mintz GS, et al. Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol. 2001;37:1864–70.

    Article  Google Scholar 

  17. Nakamura M, Nishikawa H, Mukai S, et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 2001;37:63–9.

    Article  PubMed  CAS  Google Scholar 

  18. Higashikuni Y, Tanabe K, Yamamoto H, et al. Relationship between coronary artery remodeling and plaque composition in culprit lesions: an intravascular ultrasound radiofrequency analysis. Circ J. 2007;71:654–60.

    Article  PubMed  Google Scholar 

  19. Takeuchi H, Morino Y, Matsukage T, et al. Impact of vascular remodeling on the coronary plaque compositions: an investigation with in vivo tissue characterization using integrated backscatter-intravascular ultrasound. Atherosclerosis. 2009;202:476–82.

    Article  PubMed  CAS  Google Scholar 

  20. Guo N, Maehara A, Mintz GS, et al. Incidence, mechanisms, predictors, and clinical impact of acute and late stent malapposition after primary intervention in patients with acute myocardial infarction: an intravascular ultrasound substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) trial. Circulation. 2010;122:1077–84.

    Article  PubMed  Google Scholar 

  21. Kang SJ, Mintz GS, Park DW, et al. Late and very late drug-eluting stent malapposition: serial 2-year quantitative IVUS analysis. Circ Cardiovasc Interv. 2010;3:335–40.

    Article  PubMed  Google Scholar 

  22. Abizaid A, Mintz GS, Pichard AD, et al. Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1998;82:423–8.

    Article  PubMed  CAS  Google Scholar 

  23. Nishioka T, Amanullah AM, Luo H, et al. Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity: comparison with stress myocardial perfusion imaging. J Am Coll Cardiol. 1999;33:1870–8.

    Article  PubMed  CAS  Google Scholar 

  24. Takagi A, Tsurumi Y, Ishii Y, et al. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation. 1999;100:250–5.

    Article  PubMed  CAS  Google Scholar 

  25. Abizaid AS, Mintz GS, Mehran R, et al. One year follow-up after percutaneous transluminal angioplasty was not performed based on intravascular ultrasound findings. Importance of lumen dimensions. Circulation. 1999;100:256–61.

    Article  PubMed  CAS  Google Scholar 

  26. Lee CH, Tai BC, Soon CY, et al. New set of intravascular ultrasound-derived anatomic criteria for defining functionally significant stenoses in small coronary arteries (results from Intravascular Ultrasound Diagnostic Evaluation of Atherosclerosis in Singapore [IDEAS] study). Am J Cardiol. 2010;105:1378–84.

    Article  PubMed  Google Scholar 

  27. Briguori C, Anzuini A, Airoldi F, et al. Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol. 2001;87:136–41.

    Article  PubMed  CAS  Google Scholar 

  28. Takayama T, Hodgson JM. Prediction of the physiologic severity of coronary lesions using 3D IVUS: validation by direct coronary pressure measurements. Catheter Cardiovasc Interv. 2001;53:48–55.

    Article  PubMed  CAS  Google Scholar 

  29. Kang SJ, Lee JY, Ahn JM, et al. Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv. 2011;4:65–71.

    Article  PubMed  Google Scholar 

  30. Ahn JM, Kang SJ, Mintz GS, et al. Validation of minimal luminal area measured by intravascular ultrasound for assessment of functionally significant coronary stenosis comparison with myocardial perfusion imaging. JACC Cardiovasc Interv. 2011;4:665–71.

    Article  PubMed  Google Scholar 

  31. Ben-Dor I, Torguson R, Gaglia Jr MA, et al. Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. EuroIntervention. 2011;7:225–33.

    Article  PubMed  Google Scholar 

  32. Koo BK, Yang HM, Doh JH, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4:803–11.

    Article  PubMed  Google Scholar 

  33. Jasti V, Ivan E, Yalamanchili V, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2001;110:2831–6.

    Article  Google Scholar 

  34. Bech GJ, Droste H, Pijls NH, et al. Value of fractional flow reserve in making decisions about bypass surgery for equivocal left main coronary artery disease. Heart. 2001;86:547–52.

    Article  PubMed  CAS  Google Scholar 

  35. Hamilos M, Muller O, Cuisset T, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120:1505–12.

    Article  PubMed  Google Scholar 

  36. de la Torre Hernandez JM, Hernández Hernandez F, Alfonso F, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58:351–8.

    Article  PubMed  Google Scholar 

  37. Kim SH, Hong MK, Park DW, et al. Impact of plaque characteristics analyzed by intravascular ultrasound on long-term clinical outcomes. Am J Cardiol. 2009;103:1221–6.

    Article  PubMed  Google Scholar 

  38. Maehara A, Mintz GS, Bui AB, et al. Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol. 2002;40:904–10.

    Article  PubMed  Google Scholar 

  39. Hong MK, Mintz GS, Lee CW, et al. Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a three-vessel intravascular ultrasound study in 235 patients. Circulation. 2004;110:928–33.

    Article  PubMed  Google Scholar 

  40. Hong MK, Mintz GS, Lee CW, et al. The site of plaque rupture in native coronary arteries: a three-vessel intravascular ultrasound analysis. J Am Coll Cardiol. 2005;19:261–5.

    Article  Google Scholar 

  41. Fujii K, Kobayashi Y, Mintz GS, et al. Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and non-culprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation. 2003;108:2473–8.

    Article  PubMed  Google Scholar 

  42. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–40.

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka A, Shimada K, Namba M, et al. Ruptured plaque is associated with larger infarct size following successful percutaneous coronary intervention in ST segment elevation acute myocardial infarction. Coron Artery Dis. 2009;20:260–6.

    Article  PubMed  Google Scholar 

  44. Kusama I, Hibi K, Kosuge M, et al. Impact of plaque rupture on infarct size in ST-segment elevation anterior acute myocardial infarction. J Am Coll Cardiol. 2007;50:1230–7.

    Article  PubMed  Google Scholar 

  45. Okura H, Kobayashi Y, Sumitsuji S, et al. Effect of culprit-lesion remodeling versus plaque rupture on three-year outcome in patients with acute coronary syndrome. Am J Cardiol. 2009;103:791–5.

    Article  PubMed  Google Scholar 

  46. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation. 2002;106:804–8.

    Article  PubMed  CAS  Google Scholar 

  47. Lee SY, Mintz GS, Kim SY, et al. Attenuated plaque detected by intravascular ultrasound: clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2009;2:65–72.

    Article  PubMed  Google Scholar 

  48. Wu X, Mintz GS, Xu K, et al. The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial. JACC Cardiovasc Interv. 2011;4:495–502.

    Article  PubMed  Google Scholar 

  49. Maehara A, Mintz GS, Ahmed JM, et al. An intravascular ultrasound classification of angiographic coronary artery aneurysms. Am J Cardiol. 2001;88:365–70.

    Article  PubMed  CAS  Google Scholar 

  50. Ge J, Jeremias A, Rupp A, et al. New signs characteristic of myocardial bridging demonstrated by intracoronary ultrasound and Doppler. Eur Heart J. 1999;20:1707–16.

    Article  PubMed  CAS  Google Scholar 

  51. Tsujita K, Maehara A, Mintz GS, et al. Comparison of angiographic and intravascular ultrasonic detection of myocardial bridging of the left anterior descending coronary artery. Am J Cardiol. 2008;102:1608–13.

    Article  PubMed  Google Scholar 

  52. Tsujita K, Maehara A, Mintz GS, et al. Impact of myocardial bridge on clinical outcome after coronary stent placement. Am J Cardiol. 2009;103:1344–8.

    Article  PubMed  Google Scholar 

  53. Tsujita K, Maehara A, Mintz GS, et al. Serial intravascular ultrasound analysis of the impact of myocardial bridge on neointimal proliferation after coronary stenting in patients with acute myocardial infarction. J Interv Cardiol. 2010;23:114–22.

    Article  PubMed  Google Scholar 

  54. Micha M, Peter A, Walter A, et al. Idiopathic spontaneous coronary artery dissection: incident, diagnosis and treatment. Int J Cardiol. 2005;101:363–9.

    Article  Google Scholar 

  55. Klein AJ, Hudson PA, Kim MS, et al. Spontaneous left main coronary artery dissection and the role of intravascular ultrasonography. J Ultrasound Med. 2010;29:981–8.

    PubMed  Google Scholar 

  56. Maehara A, Mintz GS, Castagna MT, et al. Intravascular ultrasound assessment of spontaneous coronary artery dissection. Am J Cardiol. 2002;89:466–8.

    Article  PubMed  Google Scholar 

  57. Spray TL, Roberts WC. Changes in saphenous veins used as aortocoronary bypass grafts. Am Heart J. 1977;94(4):500–16.

    Article  PubMed  CAS  Google Scholar 

  58. Castagna MT, Mintz GS, Weissman NJ, et al. Calcification in saphenous vein grafts: clinical correlated and intravascular ultrasound findings. J Am Coll Cardiol. 2002;39:36A.

    Article  Google Scholar 

  59. Liu X, Doi H, Maehara A, et al. A volumetric intravascular ultrasound comparison of early drug-eluting stent thrombosis versus restenosis. JACC Cardiovasc Interv. 2009;2:428–34.

    Article  PubMed  Google Scholar 

  60. Kang SJ, Mintz GS, Park DW, et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis. Circ Cardiovasc Interv. 2011;4:9–14.

    Article  PubMed  Google Scholar 

  61. Mintz GS. What to do about late incomplete stent apposition? Circulation. 2007;115:2379–81.

    Article  PubMed  Google Scholar 

  62. Hassan AK, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2010;31:1172–80.

    Article  PubMed  CAS  Google Scholar 

  63. Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115:2426–34.

    Article  PubMed  CAS  Google Scholar 

  64. Kang SJ, Mintz GS, Park DW, et al. Tissue characterization of in-stent neointima using intravascular ultrasound radiofrequency data analysis. Am J Cardiol. 2010;106:1561–5.

    Article  PubMed  Google Scholar 

  65. Lee CW, Kang SJ, Park DW, et al. Intravascular ultrasound findings in patients with very late stent thrombosis after either drug-eluting or bare-metal stent implantation. J Am Coll Cardiol. 2010;55:1936–42.

    Article  PubMed  Google Scholar 

  66. Kang SJ, Mintz GS, Akasaka T, et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation. Circulation. 2011;123:2954–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Mintz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Guo, N., Mintz, G.S. (2014). Quantitative, Qualitative, and Diagnostic Intravascular Ultrasound. In: Thompson, C. (eds) Textbook of Cardiovascular Intervention. Springer, London. https://doi.org/10.1007/978-1-4471-4528-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4528-8_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4527-1

  • Online ISBN: 978-1-4471-4528-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics