Depiction Using Geometric Constraints

  • Craig S. Kaplan
Part of the Computational Imaging and Vision book series (CIVI, volume 42)


Hand made and computer generated drawings usually place marks with regard only for the role they play in communicating the overall content of the drawing. However, novel drawing styles emerge when extra constraints are applied to force the marks themselves to behave in an eye-catching way. I explore three drawing styles based on complex geometric relationships between paths: continuous line drawing with a closed loop, drawings from tree structures, and mazes that depict images.


Span Tree Source Image Minimum Span Tree Travelling Salesman Problem Cellular Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. J. Univers. Comput. Sci. 1(12), 752–761 (1995) Google Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006) MATHGoogle Scholar
  3. 3.
    Berg, C.: Amazing Art: Wonders of the Ancient World. Harper Collins, New York (2001) Google Scholar
  4. 4.
    Bosch, R.: Simple-closed-curve sculptures of knots and links. J. Math. Arts 4(2), 57–71 (2010). doi: 10.1080/17513470903459575 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bosch, R., Herman, A.: Continuous line drawings via the traveling salesman problem. Oper. Res. Lett. 32(4), 302–303 (2004). doi: 10.1016/j.orl.2003.10.001 MATHCrossRefGoogle Scholar
  6. 6.
    Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2011) Google Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Stein, R.L.R.C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009) MATHGoogle Scholar
  8. 8.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Application, 3rd edn. Springer, Berlin (2010) Google Scholar
  9. 9.
    Greenfield, G.: Composite digital mosaics using duotone tiles. In: Kaplan, C.S., Sarhangi, R. (eds.) Proceedings of Bridges 2009: Mathematics, Music, Art, Architecture, Culture, pp. 155–162. Tarquin Books, Mill Valley (2009) Google Scholar
  10. 10.
    Inglis, T.C., Inglis, S., Kaplan, C.S.: Op Art rendering with lines and curves. Comput. Graph. 36(6), 607–621 (2012). doi: 10.1016/j.cag.2012.03.003 CrossRefGoogle Scholar
  11. 11.
    Inoue, K., Urahama, K.: Halftoning with minimum spanning trees and its application to maze-like images. Comput. Graph. 33(5), 638–647 (2009). doi: 10.1016/j.cag.2008.09.015 CrossRefGoogle Scholar
  12. 12.
    Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Visualization in Scientific Computing’97. Proceedings of the Eurographics Workshop, Boulogne-sur-Mer, France, pp. 43–56. Springer, Berlin (1997) Google Scholar
  13. 13.
    Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput. Graph. 15(1), 62–76 (2009). doi: 10.1109/TVCG.2008.81 CrossRefGoogle Scholar
  14. 14.
    Kaplan, C.S., Bosch, R.: TSP art. In: Bridges 2005: Mathematical Connections in Art, Music and Science, pp. 301–308 (2005) Google Scholar
  15. 15.
    Long, J.: Modeling dendritic structures for artistic effects. Master’s thesis, University of Saskatchewan (2007) Google Scholar
  16. 16.
    Long, J., Mould, D.: Dendritic stylization. Vis. Comput. 25(3), 241–253 (2009) CrossRefGoogle Scholar
  17. 17.
    Okamoto, Y., Uehara, R.: How to make a picturesque maze. In: Proceedings of the 21st Annual Canadian Conference on Computational Geometry, pp. 137–140 (2009) Google Scholar
  18. 18.
    Pedersen, H., Singh, K.: Organic labyrinths and mazes. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering, NPAR’06, pp. 79–86. ACM, New York (2006). doi: 10.1145/1124728.1124742 CrossRefGoogle Scholar
  19. 19.
    Real Pen Work: Self-Instructor in Penmanship. Knowles & Maxim, Pittsfield (1885).
  20. 20.
    Ross, F., Ross, W.T.: The Jordan curve theorem is non-trivial. J. Math. Arts 5(4), 213–219 (2011). doi: 10.1080/17513472.2011.634320 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Secord, A.: Weighted Voronoi stippling. In: 2nd International Symp. on Non-Realistic Animation and Rendering (NPAR), pp. 37–43. ACM, New York (2002) Google Scholar
  22. 22.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  23. 23.
    Turk, G.: Generating textures for arbitrary surfaces using reaction–diffusion. Comput. Graph. 25(4), 289–298 (1991) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wan, L., Liu, X., Wong, T.T., Leung, C.S.: Evolving mazes from images. IEEE Trans. Vis. Comput. Graph. 16(2), 287–297 (2010) CrossRefGoogle Scholar
  25. 25.
    Witten, T.A. Jr., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981). doi: 10.1103/PhysRevLett.47.1400 CrossRefGoogle Scholar
  26. 26.
    Wong, F.J., Takahashi, S.: Flow-based automatic generation of hybrid picture mazes. Comput. Graph. Forum 28(7), 1975–1984 (2009). doi: 10.1111/j.1467-8659.2009.01576.x CrossRefGoogle Scholar
  27. 27.
    Wong, F.J., Takahashi, S.: A graph-based approach to continuous line illustrations with variable levels of detail. Comput. Graph. Forum 30(7), 1931–1939 (2011). doi: 10.1111/j.1467-8659.2011.02040.x CrossRefGoogle Scholar
  28. 28.
    Xing, Q., Akleman, E., Taubin, G., Chen, J.: Surface covering curves. In: Cunningham, D., House, D. (eds.) Workshop on Computational Aesthetics, pp. 107–114. Eurographics Association, Annecy (2012). doi: 10.2312/COMPAESTH/COMPAESTH12/107-114 Google Scholar
  29. 29.
    Xu, J., Kaplan, C.S.: Image-guided maze construction. ACM Trans. Graph. 26(3), 29 (2007). Proceedings of SIGGRAPH 2007. doi: 10.1145/1276377.1276414 CrossRefGoogle Scholar
  30. 30.
    Xu, J., Kaplan, C.S.: Vortex maze construction. J. Math. Arts 1(1), 7–20 (2007) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations