Skip to main content

Artistic Rendering of Portraits

Part of the Computational Imaging and Vision book series (CIVI,volume 42)

Abstract

This chapter presents an overview of the latest computerized artistic portrait rendering techniques. Artistic rendering of portraits can be viewed as an image generating process controlled by two factors. The first one is face fidelity, meaning a rendered portrait image should preserve a certain amount of the original face’s information. The second factor is the artistic style chosen to simulate different media such as sketch and painting. In the literature, portrait rendering algorithms either adopt different models and data structures to represent the facial information or use different graphical elements and compositional methods to simulate various media and styles. These two factors essentially reveal the two principles in portraiture, namely the pursuits of likeness and aesthetic.

Keywords

  • Triangular Mesh
  • Facial Surface
  • Active Appearance Model
  • Active Shape Model
  • Facial Part

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4471-4519-6_18

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4519-6_12
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4519-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11
Fig. 12.12
Fig. 12.13
Fig. 12.14
Fig. 12.15
Fig. 12.16
Fig. 12.17

References

  1. Barrodale, I., Skea, D., Berkley, M., Kuwahara, R., Poeckert, R.: Warping digital images using thin plate splines. Pattern Recognit. 26(2), 375–376 (1993)

    CrossRef  Google Scholar 

  2. Chen, H., Xu, Y.Q., Shum, H.Y., Zhu, S.C., Zheng, N.N.: Example-based facial sketch generation with non-parametric sampling. In: Proceedings of ICCV (2001)

    Google Scholar 

  3. Chen, H., Liu, Z., Rose, C., Xu, Y., Shum, H.Y., Salesin, D.: Example-based composite sketching of human portraits. In: Proceedings of NPAR (2004)

    Google Scholar 

  4. Chiang, P.Y., Liao, W.H., Li, T.Y.: Automatic caricature generation by analyzing facial features. In: Proceedings of ACCV (2004)

    Google Scholar 

  5. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape model—their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)

    CrossRef  Google Scholar 

  6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    CrossRef  Google Scholar 

  7. Gooch, A., Gooch, B.: Non-Photorealistic Rendering. AK Peters, Wellesley (2001)

    MATH  Google Scholar 

  8. Hegdé, J., Thompson, S., Kersten, D.: Identifying faces in two-tone (‘Mooney’) images: A psychophysical and fMRI study. J. Vis. 7(9), 624 (2007)

    CrossRef  Google Scholar 

  9. Leopold, D.A., O’Toole, A.J., Vetter, T., Blanz, V.: Prototype-referenced shape encoding revealed by high-level aftereffects. Nat. Neurosci. 4(1), 89–94 (2001)

    CrossRef  Google Scholar 

  10. Li, Y., Kobatake, H.: Extraction of facial sketch images and expression transformation based on FACS. In: Proceedings of ICIP (1995)

    Google Scholar 

  11. Li, Y., Kobatake, H.: Extraction of facial sketch image based on morphological processing. In: Proceedings of ICIP (1997)

    Google Scholar 

  12. Liang, L., Chen, H., Xu, Y.Q., Shum, H.Y.: Example-based caricature generation with exaggeration. In: Proceedings of Pacific Graphics (2002)

    Google Scholar 

  13. Meng, M., Zhao, M., Zhu, S.C.: Artistic paper-cut of human portraits. In: Proceedings of ACM MM (2010)

    Google Scholar 

  14. Min, F., Suo, J.L., Zhu, S.C., Sang, N.: An automatic portrait system based on and-or graph representation. In: Proceedings of EMMCVPR (2007)

    Google Scholar 

  15. Mo, Z., Lewis, J.P., Neumann, U.: Improved automatic caricature by feature normalization and exaggeration. In: SIGGRAPH Sketch (2004)

    Google Scholar 

  16. Tominaga, M., Fukuoka, S., Murakami, K., Koshimizu, H.: Facial caricaturing with motion caricaturing in PICASSO system. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (1997)

    Google Scholar 

  17. Tominaga, M., Hayashi, J.I., Murakami, K., Koshimizu, H.: Facial caricaturing system PICASSO with emotional motion deformation. In: Proceedings of the 2nd International Conference on Knowledge-Based Intelligent Electronic System (1998)

    Google Scholar 

  18. Tresset, P., Leymarie, F.: Generative portrait sketching. In: Proceedings of VSMM (2005)

    Google Scholar 

  19. Wang, X., Tang, X.: Face sketch synthesis and recognition. In: Proceedings of ICCV (2003)

    Google Scholar 

  20. Xu, Z., Luo, J.: Accurate dynamic sketching of faces from video. In: Proceedings of CVPR (2007)

    Google Scholar 

  21. Xu, Z., Chen, H., Zhu, S.C.: A high resolution grammatical model for face representation and sketching. In: Proceedings of CVPR (2005)

    Google Scholar 

  22. Xu, Z., Chen, H., Zhu, S.C., Luo, J.: A hierarchical compositional model for face representation and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)

    CrossRef  Google Scholar 

  23. Zeng, K., Zhao, M., Xiong, C., Zhu, S.C.: From image parsing to painterly rendering. ACM Trans. Graph. 29(1), 2 (2009)

    CrossRef  Google Scholar 

  24. Zhao, M., Zhu, S.C.: Portrait painting using active templates. In: Proceedings of NPAR (2011)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Meng Meng, Jinli Suo and Yaling Yang for discussions and help with the experimental data and figures during studying the likeness and aesthetic principles in portrait rendering, and Amy Morrow for suggestions on the presentation of this chapter. This work has been supported by ONR MURI Grant N000141010933 and DARPA Award FA 8650-11-1-7149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingtian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Zhao, M., Zhu, SC. (2013). Artistic Rendering of Portraits. In: Rosin, P., Collomosse, J. (eds) Image and Video-Based Artistic Stylisation. Computational Imaging and Vision, vol 42. Springer, London. https://doi.org/10.1007/978-1-4471-4519-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4519-6_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4518-9

  • Online ISBN: 978-1-4471-4519-6

  • eBook Packages: Computer ScienceComputer Science (R0)