Kinematic Synthesis

Conference paper

Abstract

In this chapter we examine the kinematic synthesis theory for spatial serial chains. The kinematics equations of the chain are presented in their usual form using the Denavit-Hartenberg convention. The product of exponentials version of these kinematics equations are then reformulated using relative displacements from a reference position. These equations are shown to be equivalent to a dual quaternion, or Clifford algebra, formulation of the kinematics equations. It is these equations that are used for the design of serial chains. Remarkably, these equations specialize to the well-known complex vector design equations for planar serial chains. The complexity of the synthesis problem is known to simplify if the serial chain has a reachable surface, and we consider two cases the sphere and the circular torus. While the synthesis equations for the spatial SS chain has 20 solutions, the spatial RRS chain that generates the circular torus has over 90,000 solutions.

Keywords

Sine Alba Coupler 

References

  1. 1.
    Gupta, K.C.: Kinematic analysis of manipulators using the zero reference position description. Int. J. Robot. Res. 5(2), 5–13 (1986) CrossRefGoogle Scholar
  2. 2.
    McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990) Google Scholar
  3. 3.
    Perez, A., McCarthy, J.M.: Dual quaternion synthesis of constrained robotic systems. ASME J. Mech. Des. 126(3), 425–435 (2004) CrossRefGoogle Scholar
  4. 4.
    Murray, R.M., Li, X., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1995) Google Scholar
  5. 5.
    De Sa, S., Roth, B.: Kinematic mappings. Part 2: rational algebraic motions in the plane. ASME J. Mech. Des. 103, 712–717 (1981) CrossRefGoogle Scholar
  6. 6.
    Ravani, B., Roth, B.: Motion synthesis using kinematic mapping. ASME J. Mech. Transm. Autom. Des. 105(3), 460–467 (1983) CrossRefGoogle Scholar
  7. 7.
    Suh, C.H., Radcliffe, C.W.: Kinematics and Mechanisms Design. Wiley, New York (1978) Google Scholar
  8. 8.
    Burmester, L.: Lehrbuch der Kinematik. Verlag Von Arthur Felix, Leipzig (1886) MATHGoogle Scholar
  9. 9.
    Hartenberg, R.S., Denavit, J.: Kinematic Synthesis of Linkages. McGraw-Hill, New York (1964) Google Scholar
  10. 10.
    Chen, P., Roth, B.: Design equations for the finitely and infinitesimally separated position synthesis of binary links and combined link chains. ASME J. Eng. Ind. 91, 209–219 (1969) CrossRefGoogle Scholar
  11. 11.
    Sandor, G.N., Erdman, A.G.: Advanced Mechanism Design: Analysis and Synthesis, Vol. 2. Prentice-Hall, Englewood Cliffs (1984) Google Scholar
  12. 12.
    McCarthy, J.M.: 4.6: dual quaternions and the pole triangle. In: Erdman, A.G. (ed.) Forty Years of Modern Kinematics: A Tribute to Ferdinand Freudenstein. Wiley, New York (1993) Google Scholar
  13. 13.
    Lin, C.S., Erdman, A.G.: Dimensional synthesis of planar triads: motion generation with prescribed timing for six precision positions. Mech. Mach. Theory 22(5), 411–419 (1987) CrossRefGoogle Scholar
  14. 14.
    Subbian, T., Flugrad, D.R.: 6 and 7 position triad synthesis using continuation methods. J. Mech. Des. 116(2), 660–665 (1994) CrossRefGoogle Scholar
  15. 15.
    Krovi, V., Ananthasuresh, G.K., Kumar, V.: Kinematic and kinetostatic synthesis of planar coupled serial chain mechanisms. ASME J. Mech. Des. 124(2), 301–312 (2002) CrossRefGoogle Scholar
  16. 16.
    Schoenflies, A.: Geometrie der Bewegung in Synthetischer Darstellung, Leipzig (1886). (See also the French translation: La Géométrie du Mouvement, Paris, 1983) Google Scholar
  17. 17.
    Morgan, A.P., Sommese, A.J., Wampler, C.W.: A product-decomposition bound for Bezout numbers. SIAM J. Numer. Anal. 32(4), 1308–1325 (1995) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Innocenti, C.: Polynomial solution of the spatial Burmester problem. Mechanism Synthesis and Analysis, ASME DE-Vol. 7 (1994) Google Scholar
  19. 19.
    Liao, Q., McCarthy, J.M.: On the seven position synthesis of a 5-SS platform linkage. ASME J. Mech. Des. 123(1), 74–79 (2001) CrossRefGoogle Scholar
  20. 20.
    Raghavan, M.: Suspension mechanism synthesis for linear toe curves. In: Proceedings for the Design Engineering Technical Conferences. Paper No. DETC2002/MECH-34305, Sept. 29–Oct. 2, Montreal, Canada (2002) Google Scholar
  21. 21.
    Perez-Gracia, A., McCarthy, J.M.: The kinematic synthesis of spatial serial chains using Clifford algebra exponentials. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 220(7), 953–968 (2006). doi: 10.1243/09544062JMES166 CrossRefGoogle Scholar
  22. 22.
    Perez, A., McCarthy, J.M.: Clifford algebra exponentials and planar linkage synthesis equations. ASME J. Mech. Des. 127(5), 931–940 (2005). doi: 10.1115/1.1904047 CrossRefGoogle Scholar
  23. 23.
    Lee, E., Mavroidis, C.: Solving the geometric design problem of spatial 3R robot manipulators using polynomial homotopy continuation. ASME J. Mech. Des. 124(4), 652–661 (2002) CrossRefGoogle Scholar
  24. 24.
    Lee, E., Mavroidis, C.: Geometric design of 3R manipulators for reaching four end-effector spatial poses. Int. J. Robot. Res. 23(3), 247–254 (2004) CrossRefGoogle Scholar
  25. 25.
    Perez, A., McCarthy, J.M.: Geometric design of RRP, RPR and PRR serial chains. Mech. Mach. Theory 40(11), 1294–1311 (2005). doi: 10.1016/j.mechmachtheory.2004.12.023 MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Bottema, O., Roth, B.: Theoretical Kinematics. Dover Publications, New York (1979) MATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Robotics and Automation LaboratoryUniversity of CaliforniaIrvineUSA

Personalised recommendations