Skip to main content

Polynomials, Computers, and Kinematics for the 21st Century

  • Conference paper
Book cover 21st Century Kinematics
  • 3806 Accesses

Abstract

A review of the history of kinematics and machine theory shows a direct connection between the ability to solve polynomial systems using algebraic and numerical techniques and the advancement of the analysis and synthesis of machine systems including robots. Research challenges in kinematic synthesis, compliant mechanisms and cable and tensegrity systems show an ever increasing need for the solutions of complex polynomial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koetsier, T.: From kinematically generated curves to instantaneous invariants: episodes in the history of instantaneous planar kinematics. Mech. Mach. Theory 21(6), 489–498 (1986)

    Article  Google Scholar 

  2. Moon, F.C.: History of the dynamics of machines and mechanisms from Leonardo to Timoshenko. In: Yan, H.S., Ceccarelli, M. (eds.) International Symposium on History of Machines and Mechanisms (2009). doi:10.1007/978-1-4020-9485-9-1

    Google Scholar 

  3. Koetsier, T.: A contribution to the history of kinematics—II. Mech. Mach. Theory 18(1), 43–48 (1983)

    Article  Google Scholar 

  4. Kempe, A.B.: On a general method of describing plane curves of the nth degree by linkwork. Proc. Lond. Math. Soc. VII, 213–216 (1976)

    MathSciNet  Google Scholar 

  5. Jordan, D., Steiner, M.: Configuration spaces of mechanical linkages. Discrete Comput. Geom. 22, 297–315 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Connelly, R., Demaine, E.D.: Geometry and topology of polygonal linkages. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (2004), Chap. 9

    Google Scholar 

  7. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  8. Freudenstein, F.: Kinematics: past, present and future. Mech. Mach. Theory 8, 151–160 (1973)

    Article  Google Scholar 

  9. Duffy, J.: The Analysis of Mechanisms and Robot Manipulators. Wiley, New York (1980), 419 pp.

    Google Scholar 

  10. Lee, H.Y., Liang, C.G.: Displacement analysis of the general spatial 7-link 7R mechanisms. Mech. Mach. Theory 23(2), 219–226 (1988)

    Article  Google Scholar 

  11. Canny, J., Emiris, I.: An efficient algorithm for the sparse matrix resultant. Applied algebra, algebraic algorithms and error correcting codes. Lect. Notes Comput. Sci. 673, 89–104 (1993). doi:10.1007/3-540-56686-4-36

    Article  MathSciNet  Google Scholar 

  12. Neilsen, J., Roth, B.: Elimination methods for spatial synthesis. In: Merlet, J.P., Ravani, B. (eds.) Computational Kinematics. Solid Mechanics and Its Applications, vol. 40, pp. 51–62 (1995)

    Chapter  Google Scholar 

  13. Husty, M.L.: An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech. Mach. Theory 31(4), 365–380 (1996)

    Article  Google Scholar 

  14. Freudenstein, F., Sandor, G.N.: Synthesis of path generating mechanisms by means of a programmed digital computer. ASME J. Eng. Ind. 81, 159–168 (1959)

    Google Scholar 

  15. Sheth, P.N., Uicker, J.J.: IMP (Integrated Mechanisms Program), a computer-aided design analysis system for mechanisms and linkages. ASME J. Eng. Ind. 94, 454–464 (1972)

    Article  Google Scholar 

  16. Suh, C.H., Radcliffe, C.W.: Kinematics and Mechanism Design. Wiley, New York (1978), p. 458

    Google Scholar 

  17. Paul, R.P.: Robot Manipulators: Mathematics, Programming and Control. MIT Press, Cambridge (1981)

    Google Scholar 

  18. Kaufman, R.E., Maurer, W.G.: Interactive linkage synthesis on a small computer. In: ACM National Conference, Aug. 3–5 (1971)

    Google Scholar 

  19. Rubel, A.J., Kaufman, R.E.: KINSYN III: a new human-engineered system for interactive computer-aided design of planar linkages. ASME Trans. J. Eng. Ind., May (1977)

    Google Scholar 

  20. Erdman, A.G., Gustafson, J.: LINCAGES—a linkage interactive computer analysis and graphically enhanced synthesis package. ASME Paper No. 77-DTC-5, Chicago, Illinois (1977)

    Google Scholar 

  21. Hunt, L., Erdman, A.G., Riley, D.R.: MicroLINCAGES: microcomputer synthesis and analysis of planar linkages. In: Proceedings of the Seventh OSU Applied Mechanisms Conference, Dec. (1981)

    Google Scholar 

  22. Chuang, J.C., Strong, R.T., Waldron, K.J.: Implementation of solution rectification techniques in an interactive linkage synthesis program. ASME J. Mech. Des. 103, 657–664 (1981)

    Article  Google Scholar 

  23. Ruth, D.A., McCarthy, J.M.: SphinxPC: an implementation of four position synthesis for planar and spherical linkages. In: Proceedings of the ASME Design Engineering Technical Conferences, Sacramento, CA, Sept. 14–17 (1997)

    Google Scholar 

  24. Furlong, T.J., Vance, J.M., Larochelle, P.M.: Spherical mechanism synthesis in virtual reality. ASME J. Mech. Des. 121, 515 (1999)

    Article  Google Scholar 

  25. Liao, Q., McCarthy, J.M.: On the seven position synthesis of a 5-SS platform linkage. ASME J. Mech. Des. 123, 74–79 (2001)

    Article  Google Scholar 

  26. Roth, B., Freudenstein, F.: Synthesis of path-generating mechanisms by numerical methods. ASME J. Eng. Ind. 85B-3, 298–306 (1963)

    Article  Google Scholar 

  27. Freudenstein, F., Roth, B.: Numerical solution of systems of nonlinear equations. J. ACM 10(4), 550–556 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  28. Watson, L.T.: A globally convergent algorithm for computing fixed points of C 2 maps. J. Appl. Math. Comput. 18, 87–92 (1986)

    Article  Google Scholar 

  29. Morgan, A.P.: A homotopy for solving polynomial systems. J. Appl. Math. Comput. 5, 297–311 (1979)

    Google Scholar 

  30. Tsai, L.W., Morgan, A.P.: Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods. J. Mech. Transm. Autom. Des. 107, 189–200 (1985)

    Article  Google Scholar 

  31. Wampler, C.W., Morgan, A.P.: Complete solution for the nine-point path synthesis problem for four-bar linkages. J. Mech. Des. 114(1), 153–159 (1992). doi:10.1115/1.2916909

    Article  Google Scholar 

  32. Raghavan, M., Roth, B.: Inverse kinematics of the general 6R manipulator and related linkages. J. Mech. Des. 115(3), 502–508 (1993). doi:10.1115/1.2919218

    Article  Google Scholar 

  33. Raghavan, M., Roth, B.: Solving polynomial systems for kinematic analysis and synthesis of mechanisms and robot manipulators. J. Mech. Des. 117(B), 71–79 (1995). doi:10.1115/1.2836473

    Article  Google Scholar 

  34. Raghavan, M.: The Stewart platform of general geometry has 40 configurations. J. Mech. Des. 115(2), 277–282 (1993). doi:10.1115/1.2919188

    Article  Google Scholar 

  35. Lee, E., Mavroidis, C.: Solving the geometric design problem of spatial 3R robot manipulators using polynomial homotopy continuation. ASME J. Mech. Des. 124(4), 652–661 (2002)

    Article  Google Scholar 

  36. Verschelde, J., Haegemans, A.: The GBQ algorithm for constructing start systems of homotopies for polynomial systems. SIAM J. Numer. Anal. 30(2), 583–594 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

  38. Wise, S.M., Sommese, A.J., Watson, L.T.: Algorithm 801: POLSYS PLP: a partitioned linear product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw. 26, 176–200 (2000)

    Article  MATH  Google Scholar 

  39. Lee, E., Mavroidis, C.: Geometric design of 3R robot manipulators for reaching four end-effector spatial poses. Int. J. Robot. Res. 23(3), 247–254 (2004)

    Article  Google Scholar 

  40. Su, H., McCarthy, J.M., Sosonkina, M., Watson, L.T.: POLSYS GLP: a parallel general linear product homotopy code. ACM Trans. Math. Softw. 32(4), 561–579 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Su, H., McCarthy, J.M., Watson, L.T.: Generalized linear product homotopy algorithms and the computation of reachable surfaces. ASME J. Comput. Inf. Sci. Eng. 4(3), 226–234 (2004)

    Article  Google Scholar 

  42. Perez, A., McCarthy, J.M.: Dual quaternion synthesis of constrained robotic systems. ASME J. Mech. Des. 126(3), 425–435 (2004)

    Article  Google Scholar 

  43. Perez-Gracia, A., McCarthy, J.M.: Kinematic synthesis of spatial serial chains using Clifford algebra exponentials. Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(C7), 951–966 (2006)

    Google Scholar 

  44. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Publishing Co., New Jersey (2005)

    Book  MATH  Google Scholar 

  45. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry. http://www.nd.edu/sommese/bertini

  46. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83, 109–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Midha, A., Erdman, A.G., Frohrib, D.A.: An approximate method for the dynamic analysis of elastic linkages. ASME J. Eng. Ind. 99, 449 (1977)

    Article  Google Scholar 

  48. Her, I., Midha, A.: A compliance number concept for compliant mechanisms and type synthesis. ASME J. Mech. Transm. Autom. Des. 109, 348 (1987)

    Article  Google Scholar 

  49. Hill, T.C., Midha, A.: A graphical, user-driven Newton-Raphson technique for use in the analysis and design of compliant mechanisms. ASME J. Mech. Des. 112, 123 (1990)

    Article  Google Scholar 

  50. Kota, S., Ananthasuresh, G.K., Crary, S.B., Wise, K.D.: Design and fabrication of microelectromechanical systems. ASME J. Mech. Des. 116, 1081 (1994)

    Article  Google Scholar 

  51. Frecker, M.I., Ananthasuresh, G.K., Nishiwaki, S., Kikuchi, N., Kota, S.: Topological synthesis of compliant mechanisms using multi-criteria optimization. ASME J. Mech. Des. 119, 238 (1997)

    Article  Google Scholar 

  52. Howell, L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  53. Kimball, C., Tsai, L.W.: Modeling of flexural beams subjected to arbitrary end loads. ASME J. Mech. Des. 124, 223 (2002)

    Article  Google Scholar 

  54. Jensen, B.D., Howell, L.L.: Bistable configurations of compliant mechanisms modeled using four links and translational joints. ASME J. Mech. Des. 126, 657 (2004)

    Article  Google Scholar 

  55. Su, H.J., McCarthy, J.M.: A polynomial homotopy formulation of the inverse static analysis for planar compliant mechanisms. ASME J. Mech. Des. 128, 776 (2006)

    Article  Google Scholar 

  56. Su, H.J., McCarthy, J.M.: Synthesis of bistable compliant four-bar mechanisms using polynomial homotopy. ASME J. Mech. Des. 129, 1094 (2007)

    Article  Google Scholar 

  57. Hegde, S., Ananthasuresh, G.K.: Design of single-input-single-output compliant mechanisms for practical applications using selection maps. ASME J. Mech. Des. 132, 081007 (2010)

    Article  Google Scholar 

  58. Lusk, C.P., Howell, L.L.: A micro helico-kinematic platform via spherical crank-sliders. ASME Journal of Mechanical Design 130 (2008)

    Google Scholar 

  59. Espinosa, D.A., Lusk, C.P.: Part 1: moment-dependent pseudo-rigid-body models for straight beams. In: Proc. ASME 2010 Design Engineering Technical Conferences. Paper No. DETC2010-29230 (2010)

    Google Scholar 

  60. Griffis, M., Duffy, J.: Kinestatic control: a novel theory for simultaneously regulating force and displacement. ASME J. Mech. Des. 113, 508–515 (1991)

    Article  Google Scholar 

  61. Wang, B.B.: Cable-strut systems: part I—Tensegrity. J. Constr. Steel Res. 45(3), 281–289 (1998)

    Article  Google Scholar 

  62. Motro, R.: Tensegrity: Structural Systems for the Future. Kogan Page Ltd., London (2003)

    Google Scholar 

  63. Duffy, J., Rooney, J., Knight, B., Crane, C.D. III: A review of a family of self-deploying tensegrity structures with elastic ties. Shock Vib. Dig. 32(2), 100–106 (2000)

    Article  Google Scholar 

  64. Crane, C.D. III, Duffy, J., Correa, J.C.: Static analysis of tensegrity structure. ASME J. Mech. Des. 127, 257–268 (2005)

    Article  Google Scholar 

  65. Tibert, A.G., Pellegrino, S.: Deployable tensegrity masts. In: 44th Structures, Structural Dynamics, and Materials Conference. Paper No. AIAA2003, 1978 (2003)

    Google Scholar 

  66. Barrette, G., Gosselin, C.M.: Determination of the dynamic workspace of cable-driven planar parallel mechanisms. ASME J. Mech. Des. 127, 242–248 (2005)

    Article  Google Scholar 

  67. Moon, Y., Crane, C.D. III, Roberts, R.G.: Analysis of a planar tensegrity-based compliant mechanism. In: Proc. ASME 2010 Design Engineering Technical Conferences. Paper No. DETC2010-28 (2010)

    Google Scholar 

  68. Stump, E., Kumar, V.: Workspaces of cable-actuated parallel manipulators. ASME J. Mech. Des. 128(1), 159–167 (2006)

    Article  Google Scholar 

  69. Jiang, Q., Kumar, V.: The direct kinematics of objects suspended from cables. In: Proc. ASME 2010 Design Engineering Technical Conferences. Paper No. DETC2010-280 (2010)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges National Science Foundation grant CMMI 1068497 which provided support for materials in this book as part of the Workshop on 21st Century Kinematics. In addition, the leadership of Michael Stanisic and James Schmiedeler and Phil Vogelwede, organizers of the 2012 ASME Design Engineering Technical Conferences, the support of Jian Dai, Stephen Cranfield, and Carl Nelson, who are responsible for the ASME Mechanisms and Robotics Conference, and attention to detail by Erin Dolan, who managed the execution of the Workshop are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael McCarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

McCarthy, J.M. (2013). Polynomials, Computers, and Kinematics for the 21st Century. In: McCarthy, J. (eds) 21st Century Kinematics. Springer, London. https://doi.org/10.1007/978-1-4471-4510-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4510-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4509-7

  • Online ISBN: 978-1-4471-4510-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics