Advertisement

Exact Model of MRFT and Parametric Tuning

  • Igor Boiko
Part of the Advances in Industrial Control book series (AIC)

Abstract

Dynamics identification from the modified relay feedback test is considered in Chap. 5. Despite the primary subject of this book being non-parametric tuning, the modified relay feedback test presented earlier can also be used for parametric tuning. In this case the use of an exact model of the oscillation instead of one based on the approximate describing function method would be beneficial. This chapter aims to provide models suitable for parametric methods of tuning. Exact models of oscillations in the system with the relay feedback test and the modified relay feedback test are presented in this chapter. The analysis is based on the locus of a perturbed relay system method. An exact model of oscillations in the system with the two-relay control is presented too. Orbital stability of the oscillations is analysed. An example illustrating identification of process dynamics through the provided models is given.

Keywords

Periodic Solution Periodic Motion Orbital Stability Relay System Describe Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aguilar, L., Boiko, I., Fridman, L., & Freidovich, L. (2012). Generating oscillations in inertia wheel pendulum via two-relay controller. International Journal of Robust and Nonlinear Control, 22(3), 318–330. MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aguilar, L., Boiko, I., Fridman, L., & Iriarte, R. (2009). Generating self-excited oscillations via two-relay controller. IEEE Transactions on Automatic Control, 54(2), 416–420. MathSciNetCrossRefGoogle Scholar
  3. 8.
    Atherton, D. P. (1975). Nonlinear Control Engineering—Describing Function Analysis and Design. Workingham: Van Nostrand. Google Scholar
  4. 15.
    Boiko, I. (2009). Discontinuous Control Systems: Frequency-Domain Analysis and Design. Boston: Birkhäuser. MATHGoogle Scholar
  5. 16.
    Boiko, I. (2005). Oscillations and transfer properties of relay servo systems—the locus of a perturbed relay system approach. Automatica, 41, 677–683. MathSciNetMATHCrossRefGoogle Scholar
  6. 18.
    Boiko, I., Fridman, L., & Castellanos, M. I. (2004). Analysis of second order sliding mode algorithms in the frequency domain. IEEE Transactions on Automatic Control, 49(6), 946–950. MathSciNetCrossRefGoogle Scholar
  7. 21.
    Boiko, I. (2008). Autotune identification via the locus of a perturbed relay system approach. IEEE Transactions on Control Systems Technology, 16(1), 182–185. MathSciNetCrossRefGoogle Scholar
  8. 23.
    Boiko, I., Fridman, L., Pisano, A., & Usai, E. (2009). Analysis of input-output performance of second-order sliding mode control algorithms. IEEE Transactions on Automatic Control, 54(2), 399–403. MathSciNetCrossRefGoogle Scholar
  9. 29.
    Castellanos, M. I., Boiko, I., & Fridman, L. (2007). Parameter identification via modified twisting algorithm. International Journal of Control, 81(5), 788–796. MathSciNetCrossRefGoogle Scholar
  10. 34.
    Crowe, J., & Johnson, M. (1999). A new non-parametric identification procedure for online controller tuning. In Proc. 2011 American Control Conference, San Diego, USA (pp. 3337–3341). Google Scholar
  11. 35.
    Crowe, J., & Johnson, M. (2005). Phase-locked loop methods. In M. Johnson, & M. Moradi (Eds.), PID Control: New Identification and Design Methods (pp. 213–258). London: Springer. Google Scholar
  12. 36.
    Crowe, J., & Johnson, M. (2005). Phase-locked loop methods and PID control. In M. Johnson, & M. Moradi (Eds.), PID Control: New Identification and Design Methods (pp. 259–296). London: Springer. Google Scholar
  13. 38.
    Friman, M., & Waller, K. V. (1997). A two-channel relay for autotuning. Industrial and Engineering Chemistry Research, 36(7), 2662–2671. CrossRefGoogle Scholar
  14. 39.
    Gelb, A., & Vander Velde, W. E. (1968). Multiple-Input Describing Functions and Nonlinear System Design. New York: McGraw-Hill. MATHGoogle Scholar
  15. 41.
    Hang, C. C., Åström, K. J., & Wang, Q. G. (2002). Relay feedback autotuning of process controllers—a tutorial review. Journal of Process Control, 12, 143. CrossRefGoogle Scholar
  16. 42.
    Hsu, J. C., & Meyer, A. U. (1968). Modern Control Principles and Applications. New York: McGraw-Hill. MATHGoogle Scholar
  17. 44.
    Johnson, M., & Moradi, M. (2005). PID Control: New Identification and Design Methods. London: Springer. Google Scholar
  18. 45.
    Kaya, I., & Atherton, D. P. (1999). A PI-PD controller design for integrating processes. In Proc. 1999 American Control Conference, San Diego, CA, USA (pp. 258–262). Google Scholar
  19. 46.
    Kaya, I., & Atherton, D. P. (1998). An improved parameter estimation method using limit cycle data. In UKACC Internat. Conf. on Control, IEE (pp. 682–687). CrossRefGoogle Scholar
  20. 47.
    Kaya, I., & Atherton, D. P. (2001). Parameter estimation from relay autotuning with asymmetric limit cycle data. Journal of Process Control, 11, 429–439. CrossRefGoogle Scholar
  21. 50.
    Lee, J., Cho, W., & Edgar, T. F. (1990). An improved technique for PID controller tuning from closed-loop tests. AIChE Journal, 36, 1891. CrossRefGoogle Scholar
  22. 53.
    Luyben, W. L. (1987). Derivation of transfer functions for highly nonlinear distillation columns. Industrial & Engineering Chemistry Research, 26, 2490–2495. CrossRefGoogle Scholar
  23. 55.
    MacColl, L. A. (1945). Fundamental Theory of Servomechanisms. New York: Van Nostrand. Google Scholar
  24. 58.
    Majhi, S., & Atherton, D. P. (1999). Autotuning and controller design for processes with small time delays. IEE Proceedings. Control Theory and Applications, 146(5), 415–425. CrossRefGoogle Scholar
  25. 59.
    Majhi, S., Sahmbi, J. S., & Atherton, D. P. (2001). Relay feedback and wavelet based estimation of plant model parameters. In Proc. 40 IEEE CDC, Florida, USA (pp. 3326–3331). Google Scholar
  26. 60.
    Majhi, S. (2007). Relay-based identification of a class of non-minimum phase SISO processes. IEEE Transactions on Automatic Control, 52(1), 134–139. MathSciNetCrossRefGoogle Scholar
  27. 71.
    Qing-Guo, W., Chang-Chieh, H., & Qiang, B. (1999). A technique for frequency response identification from relay feedback. IEEE Transactions on Control Systems Technology, 7(1), 122–128. CrossRefGoogle Scholar
  28. 78.
    Tan, K. K., Lee, T. H., & Wang, Q.-G. (1996). Enhanced automatic tuning procedure for process control of PI/PID controllers. AIChE Journal, 42, 2555–2562. CrossRefGoogle Scholar
  29. 79.
    Tan, K. K., Wang, Q.-G., Hang, C. C., & Hägglund, T. (1999). Advances in PID Control. London: Springer. Google Scholar
  30. 80.
    Tsypkin, Ya. Z. (1984). Relay Control Systems. Cambridge: Cambridge University Press. MATHGoogle Scholar
  31. 82.
    Visioli, A. (2006). Practical PID Control. London: Springer. MATHGoogle Scholar
  32. 83.
    Voda, A. A., & Landau, I. D. (1995). A method of autocalibration of PID controllers. Automatica, 31(1), 41–53. MathSciNetMATHCrossRefGoogle Scholar
  33. 85.
    Wang, Q.-G., Lee, T. H., & Lin, C. (2003). Relay Feedback: Analysis, Identification and Control. London: Springer. CrossRefGoogle Scholar
  34. 87.
    Yu, C.-C. (1999). Automatic Tuning of PID Controllers: Relay Feedback Approach. New York: Springer. Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Igor Boiko
    • 1
  1. 1.Electrical Engineering DepartmentThe Petroleum InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations