Skip to main content

Materials for Next Generation SOFCs

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

New materials are constantly identified as potential components of next generation energy technologies. Significantly, new engineering solutions have also been proposed that will enhance the performance of both these new and also existing materials. Here the latest developments in both materials and device engineering are summarised focusing on the potential for enhanced ionic mobility achieved through engineered structures utilising thin film deposition technologies. In the second section of this work the promise of new materials will be discussed, considering the layered and double perovskite structure types as next generation electrodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.W. Fergus, Electrolytes for solid oxide fuel cells. J. Power Sources 162, 30–40 (2006)

    Article  Google Scholar 

  2. E.V. Tsipis, V.V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J. Solid State Electrochem. 12, 1367–1391 (2008)

    Article  Google Scholar 

  3. E.N.S. Muccillo, M. Kleitz, Ionic conductivity of fully stabilised ZrO2-MGO and blocking effects. J. Eur. Ceram. Soc. 15, 51–55 (1995)

    Article  Google Scholar 

  4. A.M. Stoneham, E. Wade, J.A. Kilner, Model for the fast ionic-diffusion in alumina-doped Lii. Mater. Res. Bull. 14, 661–666 (1979)

    Article  Google Scholar 

  5. H.L. Tuller, Ionic conduction in nanocrystalline materials. Solid State Ionics 131, 143–157 (2000)

    Article  Google Scholar 

  6. N. Sata et al., Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000)

    Article  Google Scholar 

  7. I. Kosacki et al., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176, 1319–1326 (2005)

    Article  Google Scholar 

  8. A. Karthikeyan, C.L. Chang, S. Ramanathan, High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects. Appl. Phys. Lett. 89, 183116 (2006)

    Article  Google Scholar 

  9. J. Garcia-Barriocanal et al., Tailoring disorder and dimensionality: strategies for improved solid oxide fuel cell electrolytes. Chem. Phys. Chem. 10, 1003–1011 (2009)

    Article  Google Scholar 

  10. X. Guo, Comment on “colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”. Science 324, 465 (2009)

    Article  Google Scholar 

  11. J.A. Kilner, Ionic conductors feel the strain. Nat. Mater. 7, 838–839 (2008)

    Article  Google Scholar 

  12. A. Cavallaro et al. Electronic nature of the enhanced conductivity in YSZ-STO multilayers deposited by PLD. Solid State Ionics 181, 592–601 (2010)

    Google Scholar 

  13. T.J. Pennycook et al., Origin of colossal ionic conductivity in oxide multilayers: interface induced sublattice disorder. Phys. Rev. Lett. 104, 115901 (2010)

    Article  Google Scholar 

  14. A. Kushima, B. Yildiz, Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? J. Mater. Chem. 20, 4809–4819 (2010)

    Article  Google Scholar 

  15. N. Schichtel et al., Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11, 3043–3048 (2009)

    Article  Google Scholar 

  16. C. Korte et al., Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol % Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10, 4623–4635 (2008)

    Article  Google Scholar 

  17. A. Peters et al., Ionic conductivity and activation energy for oxygen ion transport in superlattices—The multilayer system CSZ (ZrO2 + CaO) / Al2O3. Solid State Ionics 178, 67–76 (2007)

    Article  Google Scholar 

  18. C. Korte et al., Influence of interface structure on mass transport in phase boundaries between different ionic materials Experimental studies and formal considerations. Monaths. Chem. 140, 1069–1080 (2009)

    Article  Google Scholar 

  19. C.B. Pierce, Effect of hydrostatic pressure on ionic conductivity in doped single crystals of sodium chloride, potassium chloride, and rubidium chloride. Phys. Rev. 123, 744–754 (1961)

    Article  Google Scholar 

  20. W. Araki, T. Adachi, Mechanical effect on oxygen mobility in yttria stabilized zirconia, in Life-Cycle Analysis for New Energy Conversion and Storage Systems, ed. by V. Fthenakis, A. Dillon, N. Savage (MRS, Boston, 2008)

    Google Scholar 

  21. W. Araki, Y. Imai, T. Adachi, Mechanical stress effect on oxygen ion mobility in 8 mol % yttria-stabilized zirconia electrolyte. J. Eur. Ceram. Soc. 29, 2275–2279 (2009)

    Article  Google Scholar 

  22. W. Araki, Y. Arai, Oxygen diffusion in yttria-stabilized zirconia subjected to uniaxial stress. Solid State Ionics 181, 441–446 (2010)

    Article  Google Scholar 

  23. M. Sillassen et al., Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia. Adv. Func. Mater. 20, 2071–2076 (2010)

    Article  Google Scholar 

  24. K. Otsuka et al., Effects of dislocations on the oxygen ionic conduction in yttria stabilized zirconia. Mater. Trans. 45, 2042–2047 (2004)

    Article  Google Scholar 

  25. K. Otsuka et al., Dislocation-enhanced ionic conductivity of yttria-stabilized zirconia. Appl. Phys. Lett. 82, 877–879 (2003)

    Article  Google Scholar 

  26. F. Conchon, A. Boulle, R. Guinebretière, Misfit dislocations in highly mismatched oxide interfaces, an X-ray diffraction study. Phys. Status Solidi A 204, 2535–2541 (2007)

    Article  Google Scholar 

  27. D.C. Parfitt et al., Strain fields and line energies of dislocations in uranium dioxide. J. Phys.-Condens. Matter 22, 175004 (2010)

    Google Scholar 

  28. Y. Nohara et al., Dislocation structures and strain fields in 111 low-angle tilt grain boundaries in zirconia bicrystals. J. Electron Microsc. 59, S117–S121 (2010)

    Article  Google Scholar 

  29. M. Sase et al., Enhancement of oxygen exchange at the hetero interface of (La, Sr)CoO3/(La, Sr)2CoO4 in composite ceramics. Solid State Ionics 178, 1843–1852 (2008)

    Article  Google Scholar 

  30. G.J. la’O et al., Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem.-Intl. Ed. 49, 5344–5347 (2010)

    Google Scholar 

  31. A. Lashtabeg, S.J. Skinner, Solid oxide fuel cells—a challenge for materials chemists? J. Mater. Chem. 16(31), 3161–3170 (2006)

    Article  Google Scholar 

  32. D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soci. Rev. 37, 1568–1578 (2008)

    Article  Google Scholar 

  33. N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003)

    Article  Google Scholar 

  34. A.V. Berenov, A. Atkinson, J.A. Kilner, E. Bucher, W. Sitte, Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3-δ. Solid State Ionics 181, 819–826 (2010)

    Article  Google Scholar 

  35. J. Richter, P. Holtappels, T. Graule, T. Nakamura, L.J. Gauckler, Materials design for perovskite SOFC cathodes. Monaths. Chem. 140, 985–999 (2009)

    Article  Google Scholar 

  36. S. N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure. Acta Cryst. 11, 54–55 (1958)

    Google Scholar 

  37. V.V. Kharton, A.P. Viskup, A.V. Kovalevsky, E.N. Naumovich, F.M.B. Marques, Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics 143, 337–353 (2001)

    Article  Google Scholar 

  38. Q. Li, H. Zhao, L.H. Huo, L.P. Sun, X.L. Cheng, J.C. Grenier, Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs. Electrochem. Comm. 9, 1508–1512 (2007)

    Google Scholar 

  39. A.J. Jennings, S.J. Skinner, Thermal stability and conduction properties of the LaxSr2-xFeO4+δ system. Solid State Ionics 152, 663–667 (2002)

    Article  Google Scholar 

  40. V.V. Kharton, A.P. Viskup, E.N. Naumovich, F.M.B. Marques, Oxygen ion transport in La2NiO4-based ceramics. J. Mater. Chem. 9, 2623–2629 (1999)

    Article  Google Scholar 

  41. M. Zinkevich, F. Aldinger, Thermodynamic analysis of the ternary La-Ni-O system. J. Alloys Compd 375, 147–161 (2004)

    Article  Google Scholar 

  42. A.V. Kovalevsky, V.V. Kharton et al., Oxygen permeability, stability and electrochemical behavior of Pr2NiO4+δ-based materials. J. Electroceram. 18, 205–218 (2007)

    Article  Google Scholar 

  43. R. Sayers, J. Liu, B. Rustumji, S.J. Skinner, Novel K2NiF4-Type materials for solid oxide fuel cells: compatibility with electrolytes in the intermediate temperature range. Fuel Cells 8, 338–343 (2008)

    Article  Google Scholar 

  44. G. Amow, S.J. Skinner, Recent developments in Ruddlesden-Popper nickelate systems for soid oxide fuel cell cathodes. J. Solid State Electrochem. 10, 538–546 (2006)

    Google Scholar 

  45. H.S. Kim, H.I. Yoo, Defect chemical analysis of the non-stoichiometry, conductivity and thermopower of La2NiO4+δ. Phys. Chem. Chem. Phys. 12, 4704–4713 (2010)

    Article  Google Scholar 

  46. S.J. Skinner, J.A. Kilner, Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics 135, 709–712 (2000)

    Article  Google Scholar 

  47. M. Yashima, M. Enoki et al., Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. J. Am. Chem. Soc. 130, 2762–2763 (2008)

    Article  Google Scholar 

  48. J.M. Bassat, P. Odier, A. Villesuzanne, C. Marin, M. Pouchard, Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ionics 167, 341–347 (2004)

    Google Scholar 

  49. M. Burriel, G. Garcia, J. Santiso, J.A. Kilner, R.J. Chater, S.J. Skinner, Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. J. Mater. Chem. 18, 416–422 (2008)

    Google Scholar 

  50. G.T. Kim, S.Y. Wang, A.J. Jacobson, Z. Yuan, C.L. Chen, Impedance studies of dense polycrystalline thin films of La2NiO4+δ. J. Mater. Chem. 17, 1316–1320 (2007)

    Google Scholar 

  51. V.V. Kharton, E.V. Tsipis, A.A. Yaremchenko, J.R. Frade, Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4+δ. Solid State Ionics 166, 327–337 (2004)

    Article  Google Scholar 

  52. V.V. Kharton, F.M. Figueiredo, L. Navarro et al., Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105–1117 (2001)

    Article  Google Scholar 

  53. C.N. Munnings, S.J. Skinner, G. Amow, P.S. Whitfield, I.J. Davidson, Stability and reactivity of LSGM electrolytes with nickel-based ceramic cathodes. J. Fuel Cell Sci. Tech. 2, 34–37 (2005)

    Google Scholar 

  54. N. Solak, M. Zinkevich, F. Aldinger, Compatibility of La2NiO4 cathodes with LaGaO3 electrolytes: a computational approach. Solid State Ionics 177, 2139–2142 (2006)

    Article  Google Scholar 

  55. A. Aguadero, J.A. Alonso, M.J. Escudero, L. Daza, Evaluation of the La2Ni1–xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics 179, 393–400 (2008)

    Article  Google Scholar 

  56. R. Sayers, S.J. Skinner, Evidence for the catalytic oxidation of La2NiO4+δ. J. Mater. Chem. 21, 414–419 (2011)

    Article  Google Scholar 

  57. R. Sayers, PhD Thesis, Imperial College London, 2010

    Google Scholar 

  58. C.N. Munnings, S.J. Skinner, G. Amow, P.S. Whitfield, I.J. Davidson, Structure, stability and electrical properties of the La2-xSrxMnO4±δ solid solution series. Solid State Ionics 177, 1849–1853 (2006)

    Article  Google Scholar 

  59. L.P. Sun, L.H. Huo, H. Zhao, Q. Li, C. Pijolat, Substituted Sr2MnO4 as a possible cathode material in SOFC. J. Power Sources 179, 96–100 (2008)

    Article  Google Scholar 

  60. M. Rieu , R. Sayers, M.A. Laguna-Bercero, S.J. Skinner, P. Lenormand F. Ansart, Investigation of graded La2NiO4+δ cathodes to improve SOFC electrochemical performance. J. Electrochem. Soc. 157, B477–B480 (2010)

    Google Scholar 

  61. C. Laberty, F. Zhao, K.E. Swider-Lyons, A.V. Virkar, High performance solid oxide fuel cell cathodes with lanthanum nickelate based composites. Electrochem. Sol. State Lett. 10, B170–B174 (2007)

    Google Scholar 

  62. C. Lalanne, G. Prosperi, J.M. Bassat et al., Neodymium deficient nickelate oxide Nd1.95NiO4+d as cathode material for anode supported intermediate temperature solid oxide fuel cells. J. Power Sources 185, 1218–1224 (2008)

    Article  Google Scholar 

  63. S. Takahashi, S. Nishimoto, M. Matsuda, M. Miyake, Electrode properties of the Ruddlesden-Popper series Lan+1NinO3n+1 (n = 1,2 and 3), as intermediate temperature solid oxide fuel cells. J. Am. Ceram. Soc. 93, 2329–2333 (2010)

    Article  Google Scholar 

  64. G. Amow, S.J. Skinner, Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes. J. Solid State Electrochem. 10, 538–546 (2006)

    Article  Google Scholar 

  65. M. Respaud, C. Frontera, J.L. Garcia-Munoz et al., Magnetic and magnetotransport properties of GdBaCo2O5+δ: A high magnetic-field study. Phys. Rev. B 6421, 214401 (2001)

    Article  Google Scholar 

  66. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, B. Raveau, Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the ″112″ structure. J. Solid State Chem. 142, 247–260 (1999)

    Article  Google Scholar 

  67. A.M. Chang, S.J. Skinner, J.A. Kilner, Electrical properties of GdBaCo2O5+x for ITSOFC applications. Solid State Ionics 177, 2009–2011 (2006)

    Article  Google Scholar 

  68. A.A. Taskin, A.N. Lavrov, Y. Ando, Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett. 86, 091910 (2005)

    Article  Google Scholar 

  69. A. Tarancon, S.J. Skinner, R.J. Chater, F. Hernandez-Ramirez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)

    Article  Google Scholar 

  70. N. Li, Z. Lu, B.O. Wei., X.Q. Huang, K.F. Chen, Y.Z. Zhang, W.H. Su, Characterization of GdBaCo2O5+δ cathode for IT-SOFCs. J. Alloys Compd 454, 274–279 (2008)

    Google Scholar 

  71. J. Pena-Martinez, A. Tarancon, D. Marrero-Lopez, J.C. Ruiz-Morales, P. Nunez, Evaluation of GdBaCo2O5+δ as Cathode Material for Doped Lanthanum Gallate Electrolyte IT-SOFCs. Fuel Cells 8, 351–359 (2008)

    Article  Google Scholar 

  72. J.H. Kim, F. Prado, A. Manthiram, Characterization of GdBa1-xSrxCo2O5+δ (0 <= x <= 1.0) double perovskites as cathodes for solid oxide fuel cells. J. Electrochem. Soc. 155, B1023–B1028 (2008)

    Article  Google Scholar 

  73. G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, C.A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem. 17, 2500–2505 (2007)

    Article  Google Scholar 

  74. G. Kim, S. Wang, A.J. Jacobson, Z. Yuan et al., Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films. Appl. Phys. Lett. 88, 024103 (2006)

    Article  Google Scholar 

  75. C.J. Zhu, X.M. Liu, C.S. Yi, D. Yan, W.H. Su, Electrochemical performance of PrBaCo2O5+δ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. J. Power Sources 185, 193–196 (2008)

    Article  Google Scholar 

  76. Q.J. Zhou, T.M. He, Y. Ji, SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. J. Power Sources 185, 754–758 (2008)

    Article  Google Scholar 

  77. Q.J. Zhou, F. Wang, Y. Shen, T.M. He, Performances of LnBaCo2O5 - x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 195, 2174–2181 (2010)

    Article  Google Scholar 

  78. C.J. Zhu, X.M. Liu, C.S. Yi, L. Pei, D.J. Wang, D.T. Yan, K.G. Yao, T.Q. Lu, W.H. Su, High-performance PrBaCo2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cell. J. Power Sources 195, 3504–3507 (2010)

    Article  Google Scholar 

  79. W. Gong, M. Yadav, A.J. Jacobson, A comparison of electrochemical performance of double perovskite REBaCo2O5+x cathodes in symmetrical solid oxide fuel cells. in: Solid-State Ionics-2008, eds. by E. Traversa, T.R. Armstrong, K. Eguchi, M.R. Palacin. Materials Research Society, vol 1126 (Warrendale, 2009), pp. 35–40

    Google Scholar 

  80. M. Burriel, M. Casas-Cabanas, Zapata et al., Influence of the microstructure on the high-temperature transport properties of GdBaCo2O5.5+δ epitaxial films. Chem. Mater. 22, 5512–5520 (2010)

    Article  Google Scholar 

  81. M.B. Choi, S.Y. Jeon, J.S. Lee, H.J. Hwang, S.J. Song, Chemical diffusivity and ionic conductivity of GdBaCo2O5+δ. J. Power Sources 195, 1059–1064 (2010)

    Article  Google Scholar 

  82. J. Hermet, G. Geneste, G. Dezanneau, Molecular dynamics simulations of oxygen diffusion in GdBaCo2O5.5. Appl. Phys. Lett. 97, 174102 (2010)

    Article  Google Scholar 

  83. S. Sanna, V. Esposito, A. Tebano, S. Licoccia, E. Traversa, G. Balestrino, Enhancement of ionic conductivity in Sm-Doped Ceria/Yttria-stabilized Zirconia Heteroepitaxial Structures. Small 6, 1863–1867 (2010)

    Article  Google Scholar 

  84. I. Kosacki, Nanoscale oxygen conductors for energy conversion: Presentation at Imperial College London. 2006, London

    Google Scholar 

  85. S. Azad, O.A. Marina, C.M. Wang, L. Saraf, V. Shutthanandan, D.E. McCready, A. El-Azab, J.E. Jaffe, M.H. Engelhard, C.H.F. Peden, S. Thevuthasan, Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl. Phys. Lett. 86, 131906 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Skinner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Skinner, S.J., Cook, S., Kilner, J.A. (2013). Materials for Next Generation SOFCs. In: Irvine, J., Connor, P. (eds) Solid Oxide Fuels Cells: Facts and Figures. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4456-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4456-4_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4455-7

  • Online ISBN: 978-1-4471-4456-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics