Skip to main content

Alternative Materials for SOFCs, Opportunities and Limitations

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, we highlight some critical aspects of materials for use in solid oxide fuel cells. In relation to oxide ion conducting electrolytes, we address topics including clustering of defects in zirconias and the resultant limitations on ionic conductivity. We also discuss the ionic conduction window for various electrolyte systems. The positive and negative attributes of different anode materials are considered, highlighting the opportunities for alternative materials to be utilised in certain parts of the SOFC system. Some suitable system concepts are presented and a strategy to optimise performance and durability in the same electrode structures is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F.J. Gardner, M.J. Day, N.P. Brandon, M.N. Pashley, M. Cassidy, SOFC technology development at Rolls-Royce. J. Power Sources 86, 122–129 (2000)

    Article  Google Scholar 

  2. K. Sasaki, K. Watanabe, Y. Teraoka, Direct-alcohol SOFCs: current-voltage characteristics and fuel gas compositions. J. Electrochem. Soc. 151, A965–A970 (2004)

    Article  Google Scholar 

  3. BCH Steele (1994) Proc 1st European solid oxide fuel cell forum (ed U Bossel) 375–397

    Google Scholar 

  4. Brian C.H. Steele, Survey of materials selection for ceramic fuel cells II Cathodes and anodes. Solid State Ionics 86–88, 1223–1234 (1996)

    Article  Google Scholar 

  5. Allan J. Jacobson, Materials for solid oxide fuel cells chem. Mater 22, 660–674 (2010)

    Google Scholar 

  6. C. H. Brian Steele Angelika H, Materials for fuel-cell technologies. Nature 414:345–352 (2001)

    Google Scholar 

  7. Angela Kruth, John T.S. Irvine, Water incorporation studies on doped barium cerate perovskites. Solid State Ionics 162–163, 83–91 (2003)

    Article  Google Scholar 

  8. Z. Xinge, M. Robertson, C. Deĉes-Petit, W. Qu, O. Kesler, R. Maric, D. Ghosh, Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. J. Power Sources 164:668–677 (2007)

    Google Scholar 

  9. S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, Scandia-zirconia electrolytes for intermediate temperature oxide fuel cell operation. Solid State Ionics 136–137, 91–99 (2000)

    Article  Google Scholar 

  10. T.I. Politova, J.T.S. Irvine, Investigation of scandia-yttria-zirconia system as an electrolyte material for intermediate temperature fuel cells. Influence of yttria content in system (Y2O3)x(Sc2O3)(11−x)(ZrO2)89. Solid State Ionics 168, 153–165 (2004)

    Article  Google Scholar 

  11. H.G. Scott, Phase relationships in the zirconia-yttria system. J. Mater. Sci. 10, 1527–1535 (1975)

    Article  Google Scholar 

  12. F.M. Spiridonov, L.N. Popova, R.Y. Popil’skii, On the phase relations and the electrical conductivity in the system ZrO2-Sc2O3. J. Solid State Chem. 2, 430–438 (1970)

    Article  Google Scholar 

  13. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Google Scholar 

  14. W. Weppner, Tetragonal zirconia polycrystals: a high performance solid oxygen ion conductor. Solid State Ionics 52, 15–21 (1992)

    Article  Google Scholar 

  15. I.R. Gibson, G.P. Dransfield, J.T.S. Irvine, Influence of Yttria concentration upon electrical properties and susceptibility to ageing of Yttria-stabilised Zirconia. J. Europ. Ceram. Soc. 18, 661–667 (1998)

    Article  Google Scholar 

  16. John T.S. Irvine, Jeremy W.L. Dobson, Tatiana Politova, Susana García-Martíın, Atef Shenouda, Co-doping of Scandia–Zirconia electrolytes for SOFCs. Faraday Discuss. 134, 41–49 (2007)

    Article  Google Scholar 

  17. I.R. Gibson, J.T.S. Irvine, Study of order/disorder transition in Yttria-stabilised Zirconia by Neutron Diffraction. J. Mater. Chem. 6, 895–898 (1996)

    Article  Google Scholar 

  18. S. Garcia-Martin, D.P. Fagg, J.T.S. Irvine, Characterization of diffuse scattering in Yttria-stabilized zirconia by electron diffraction and high-resolution transmission electron microscopy. Chem. Mater. 20, 5933–5938 (2008)

    Article  Google Scholar 

  19. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)

    Article  Google Scholar 

  20. S. Tao, J.T.S. Irvine, A Redox-stable, efficient anode for solid-oxide fuel cells. Nat. Mater. 2, 320–323 (2003)

    Article  Google Scholar 

  21. G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem. Solid State Lett. 11, B16–B19 (2008)

    Article  Google Scholar 

  22. S. Tao, JTS. Irvine, S.M. Plint (2005) Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O3−δ. J. Phys. Chem. 110:21771–21776

    Google Scholar 

  23. Shanwen Tao, John T.S. Irvine, Catalytic properties of the perovskite La0.75Sr0.25Cr0.5Mn0.5O3−δ in relation to its potential as a solid oxide fuel cell anode material. Chem. Mater. 16, 4116–4121 (2004)

    Article  Google Scholar 

  24. Steven McIntosh, Hongpeng He, Shung-Ik Lee, Olga Costa-Nunes, Venkatesan V. Krishnan, John M. Vohs, Raymond J. Gorte, An examination of carbonaceous deposits in direct-utilization SOFC anodes. J. Electrochem. Soc. 151, A604–A608 (2004)

    Article  Google Scholar 

  25. A. Mitterdorfer, L.J. Gauckler, La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system. Solid State Ionics 111, 185–218 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. S. Irvine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Irvine, J.T.S., Connor, P. (2013). Alternative Materials for SOFCs, Opportunities and Limitations. In: Irvine, J., Connor, P. (eds) Solid Oxide Fuels Cells: Facts and Figures. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4456-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4456-4_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4455-7

  • Online ISBN: 978-1-4471-4456-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics