Current State of Models for the Prediction of Mechanical Failures in Solid Oxide Fuel Cells

Part of the Green Energy and Technology book series (GREEN)


The solid oxide fuel cell (SOFC) technology has to face many challenges before its large-scale commercialisation. Costs reduction, along with enhanced reliability, durability, fuel flexibility, load following capabilities and compactness are needed. Yet, despite all the research, the exact underlying mechanisms of the electrochemical reactions have not yet been unambiguously identified. The high-temperature environment promotes physicochemical modifications of the materials that alter the electrochemical and mechanical properties after prolonged use. The driving forces of these degradation processes that arise from chemical interactions between the SOFC materials themselves, on the one hand, and the volatile contaminants transported by the fed gases, on the other hand, have not yet been fully clarified.


Oxide Scale Solid Oxide Fuel Cell Membrane Electrode Assembly Creep Strain Rate Lanthanum Strontium Manganite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ABAQUS Inc., v6.8, Hibbitt, Karlsson and Sorensen, Rhode IslandGoogle Scholar
  2. 2.
    J. Adams, Young’s modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature. J. Am. Ceram. Soc. 80(4), 903–908 (2000)CrossRefGoogle Scholar
  3. 3.
    C. Appel, N. Bonanos, A. Horsewell, S. Linderoth, Ageing behaviour of zirconia stabilised by yttria and manganese oxide. J. Mater. Sci. 36(18), 4493–4501 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Ashby, H. Frost, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)Google Scholar
  5. 5.
    A. Atkinson, Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95(3–4), 249–258 (1997)CrossRefGoogle Scholar
  6. 6.
    A. Atkinson, A. Selçuk, Residual stress and fracture of laminated ceramic membranes. Acta Materialia 47(3), 867–874 (1999)CrossRefGoogle Scholar
  7. 7.
    A. Atkinson, A. Selçuk, Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics 134(1–2), 59–66 (2000)CrossRefGoogle Scholar
  8. 8.
    X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.D. Bartout, P. Ienny, M. Croset, H. Bernet, Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. Mater. Sci. Eng. A 289(1–2), 276–288 (2000)Google Scholar
  9. 9.
    N.P. Bansal, E.A. Gamble, Crystallization kinetics of a solid oxide fuel cell seal glass by differential thermal analysis. J. Power Sources 147(1–2), 107–115 (2005)CrossRefGoogle Scholar
  10. 10.
    P. Batfalsky, V. Haanappel, J. Malzbender, N. Menzler, V. Shemet, I. Vinke, R. Steinbrech, Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks. J. Power Sources 155(2), 128–137 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Biswas, T. Nithyanantham, N. Saraswathi, S. Bandopadhyay, Evaluation of elastic properties of reduced NiO-8YSZ anode-supported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments. J. Mater. Sci. 44(3), 778–785 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Bouzid, H. Champliaud, Contact stress evaluation of nonlinear gaskets using dual kriging interpolation. J. Press. Vessel Technol. 126(4), 445–450 (2004)CrossRefGoogle Scholar
  13. 13.
    M. Bram, S. Reckers, P. Drinovac, J. Mönch, R.W. Steinbrech, H.P. Buchkremer, D. Stöver, Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks. J. Power Sources 138(1–2), 111–119 (2004)CrossRefGoogle Scholar
  14. 14.
    H.-T. Chang, C.-K. Lin, C.-K. Liu, High-temperature mechanical properties of a glass sealant for solid oxide fuel cell. J. Power Sources 189(2), 1093–1099 (2009)CrossRefGoogle Scholar
  15. 15.
    L.-K. Chiang, H.-C. Liu, Y.-H. Shiu, C.-H. Lee, R.-Y. Lee, Thermo-electrochemical and thermal stress analysis for an anode-supported sofc cell. Renew. Energy 33(12), 2580–2588 (2008)CrossRefGoogle Scholar
  16. 16.
    L.-K. Chiang, H.-C. Liu, Y.-H. Shiu, C.-H. Lee, R.-Y. Lee, Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity. J. Power Sources 195(7), 1895–1904 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.-S. Chou, J.W. Stevenson, P. Singh, Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass. J. Power Sources 185(2), 1001–1008 (2008)CrossRefGoogle Scholar
  18. 18.
    C.-L. Chu, J.-Y. Wang, S. Lee, Effects of \(\hbox{La}_{0.67}\hbox{Sr}_{0.33}\hbox{MnO}_{3}\) protective coating on SOFC interconnect by plasma-sputtering. Int. J. Hydrogen Energy 33(10), 2536–2546 (2008)Google Scholar
  19. 19.
    M. Cologna, V.M Sglavo, Vertical sintering to measure the uniaxial viscosity of thin ceramic layers. Acta Materialia 58(17), 5558–5564 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Delette, J. Laurencin, M. Dupeux, J. Doyer, Measurement of the fracture energy at the interface between porous cathode layer and electrolyte in planar solid oxide fuel cells. Scripta Materialia 59(1), 31–34 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Diethelm, J. Van herle, Z. Wuillemin, A. Nakajo, N. Autissier, M. Molinelli, Impact of materials and design on solid oxide fuel cell stack operation. J. Fuel Cell Sci. Technol. 5(3), 3–6 (2008)CrossRefGoogle Scholar
  22. 22.
    C. D’Souza, N. Sammes, Mechanical properties of strontium-doped lanthanum manganite. J. Am. Ceram. Soc. 83(1), 47–52 (2000)CrossRefGoogle Scholar
  23. 23.
    A. Evans, J. Hutchinson, The thermomechanical integrity of thin films and multilayers. Acta Metallurgica et Materialia 43(7), 2507–2530 (1995)CrossRefGoogle Scholar
  24. 24.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S Pettit, Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46(5), 505–553 (2001)CrossRefGoogle Scholar
  25. 25.
    A. Faes, A. Nakajo, A. Hessler-Wyser, D. Dubois, A. Brisse, S. Modena, J. Van herle, Redox study of anode-supported solid oxide fuel cell. J. Power Sources 193(1), 55–64 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Fardadi, F. Mueller, F. Jabbari, Feedback control of solid oxide fuel cell spatial temperature variation. J. Power Sources 195(13), 4222–4233 (2010)CrossRefGoogle Scholar
  27. 27.
    J.W Fergus, Metallic interconnects for solid oxide fuel cells. Mater. Sci. Eng. A 397(1–2), 271–283 (2005)Google Scholar
  28. 28.
    J.W Fergus, Sealants for solid oxide fuel cells. J. Power Sources 147(1–2), 46–57 (2005)CrossRefGoogle Scholar
  29. 29.
    W. Fischer, J. Malzbender, G. Blass, R. Steinbrech, Residual stresses in planar solid oxide fuel cells. J. Power Sources 150, 73–77 (2005)CrossRefGoogle Scholar
  30. 30.
    A.S for Testing and Materials. Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature. ASTM standard C1499-04Google Scholar
  31. 31.
    M. Galli, J. Botsis, J. Janczak-Rusch, An elastoplastic three-dimensional homogenization model for particle reinforced composites. Comput. Mater. Sci. 41, 312–321 (2008)CrossRefGoogle Scholar
  32. 32.
    L. Gibson, M. Ashby, Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1999)Google Scholar
  33. 33.
    S. Giraud, J. Canel, Young’s modulus of some SOFCs materials as a function of temperature. J. Eur. Ceram. Soc. 28(1), 77–83 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Goodall, C. Williams, J. Fernie, T. Clyne, et al., Thermal expansion and stiffness characteristics of a highly porous, fire-resistant composite material, in International SAMPE Symposium and Exhibition (Proceedings), vol. 47, pp. 1001–1010Google Scholar
  35. 35.
    N. Govindaraju, W. Liu, X. Sun, P. Singh, R. Singh, A modeling study on the thermomechanical behavior of glass-ceramic and self-healing glass seals at elevated temperatures. J. Power Sources 190(2), 476–484 (2009)CrossRefGoogle Scholar
  36. 36.
    L. Grahl-Madsen, P. Larsen, N. Bonanos, J. Engell, S. Linderoth, Mechanical strength and electrical conductivity of Ni-YSZ cermets fabricated by viscous processing. J. Mater. Sci. 41(4), 1097–1107 (2006)CrossRefGoogle Scholar
  37. 37.
    F. Gutierrez-Mora, J.M. Ralph, J.L Routbort, High-temperature mechanical properties of anode-supported bilayers. Solid State Ionics 149(3–4), 177–184 (2002)CrossRefGoogle Scholar
  38. 38.
    C. Haering, A. Roosen, H. Schichl, Degradation of the electrical conductivity in stabilised zirconia systems: Part I: yttria-stabilised zirconia. Solid State Ionics 176(3–4), 253–259 (2005)CrossRefGoogle Scholar
  39. 39.
    J.S. Hardy, J.Y. Kim, E.C. Thomsen, K.S Weil, Improved wetting of mixed ionic/electronic conductors used in electrochemical devices with ternary air braze filler metals. J. Electrochem. Soc. 154(3), 32–39 (2007)CrossRefGoogle Scholar
  40. 40.
    T. Hashida, K. Sato, Y. Takeyama, T. Kawada, J. Mizusaki, Deformation and fracture characteristics of zirconia and ceria-based electrolytes for SOFCs under reducing atmospheres. ECS Trans. 25(2), 1565–1572 (2009)CrossRefGoogle Scholar
  41. 41.
    Haynes International. Material data sheet no. h-3000 hGoogle Scholar
  42. 42.
    F. Iguchi, Y. Endo, T. Ishida, T. Yokobori, H. Yugami, T. Otake, T. Kawada, J. Mizusaki, Oxygen partial pressure dependence of creep on yttria-doped ceria ceramics. Solid State Ionics 176(5–6), 641–644 (2005)CrossRefGoogle Scholar
  43. 43.
    T.L. Jiang, M.-H Chen, Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design. Int. J. Hydrogen Energy 34(19), 8223–8234 (2009)CrossRefGoogle Scholar
  44. 44.
    J. John R. Izzo, A.S. Joshi, K.N. Grew, W.K.S. Chiu, A. Tkachuk, S.H. Wang, W. Yun. Nondestructive reconstruction and analysis of SOFC Anodes using X-ray computed tomography at Sub-50 nm resolution. J. Electrochem. Soc. 155(5), B504–B508 (2008)Google Scholar
  45. 45.
    J. Johnson, J. Qu, Effective modulus and coefficient of thermal expansion of Ni–YSZ porous cermets. J. Power Sources 181(1), 85–92 (2008)CrossRefGoogle Scholar
  46. 46.
    T. Kawada, S. Watanabe, S.ichi Hashimoto, T. Sakamoto, A. Unemoto, M. Kurumatani, K. Sato, F. Iguchi, K. Yashiro, K. Amezawa, K. Terada, M. Kubo, H. Yugami, T. Hashida, J. Mizusaki, Classification of mechanical failure in SOFC and strategy for evaluation of operational margin. ECS Trans. 25(2), 467–472 (2009)CrossRefGoogle Scholar
  47. 47.
    J. Kim, W. Liu, C. Lee, Multi-scale solid oxide fuel cell materials modeling. Comput. Mech. 44(5), 683–703 (2009)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    J.Y. Kim, J.S. Hardy, K.S Weil, Novel metal-ceramic joining for planar SOFCs. J. Electrochem. Soc. 152(6), 52–58 (2005)CrossRefGoogle Scholar
  49. 49.
    J. Kondoh, Aging strengthening of 8 mol% yttria-fully-stabilized zirconia. J. Alloys Compd. 370(1–2), 285–290 (2004)CrossRefGoogle Scholar
  50. 50.
    J. Kondoh, T. Kawashima, S. Kikuchi, Y. Tomii, Y. Ito, Effect of aging on yttria-stabilized zirconia. 1: a study of its electrochemical properties. J. Electrochem. Soc. 145(5), 1527–1536 (1998)CrossRefGoogle Scholar
  51. 51.
    J. Kondoh, S. Kikuchi, Y. Tomii, Y. Ito, Effect of aging on yttria-stabilized zirconia. J. Electrochem. Soc. 145(5), 1550–1560 (1998)CrossRefGoogle Scholar
  52. 52.
    J. Kondoh, S. Kikuchi, Y. Tomii, Y. Ito, Effect of aging on yttria-stabilized zirconia. 2: a study of the effect of the microstructures on conductivity. J. Electrochem. Soc. 145(5), 1536–1550 (1998)CrossRefGoogle Scholar
  53. 53.
    J. Kübler, R. Primas, B. Gut, Mechanical Strength of Thermally Aged and Cycled Thin Zirconia Sheets, Advances in Science and Technology, Ceramics: Charting the Future, ed. P. Vincenzini, Techna, Florence, Italy, ISBN 88-86538-02-2, 923–928 (1995)Google Scholar
  54. 54.
    B. Kuhn, F. Wetzel, J. Malzbender, R. Steinbrech, L. Singheiser, Mechanical performance of reactive-air-brazed (RAB) ceramic/metal joints for solid oxide fuel cells at ambient temperature. J. Power Sources 193(1), 199–202 (2009)CrossRefGoogle Scholar
  55. 55.
    A. Lakki, R. Herzog, M. Weller, H. Schubert, C.Reetz, O. Görke, M. Kilo, G. Borchardt, Mechanical loss, creep, diffusion and ionic conductivity of \({\rm ZrO}_{2}\)-8 mol% \({\rm Y}_2O_{3}\) polycrystals. J. Eur. Ceram. Soc. 20(3), 285–296 (2000)Google Scholar
  56. 56.
    E. Lara-Curzio, M. Radovic, M. Trejo, C. Cofer, T. Watkins, K. More, Effect of thermal cycling and thermal aging on the mechanical properties of, and residual stresses in, Ni-YSZ/YSZ bi-layers. IV.A.11 Reliability and durability of materials and components foe solid oxide fuel cells. Adv. Solid Oxide Fuel Cells II 27(4), 383–391 (2007)Google Scholar
  57. 57.
    J. Laurencin, G. Delette, M. Dupeux, An estimation of ceramic fracture at singularities by a statistical approach. J. Eur. Ceram. Soc. 28(1), 1–13 (2008)CrossRefGoogle Scholar
  58. 58.
    J. Laurencin, G. Delette, F. Lefebvre-Joud, M. Dupeux, A numerical tool to estimate sofc mechanical degradation: case of the planar cell configuration. J. Eur. Ceram. Soc. 28(9), 1857–1869 (2008)CrossRefGoogle Scholar
  59. 59.
    H. Lein, K. Wiik, M. Einarsrud, T. Grande, E. Lara-curzio, High-temperature creep behavior of mixed conducting \(\hbox{La}_{0.5}\hbox{Sr}_{0.5}\hbox{FeCo}_{\rm x}\hbox{O}_{3-\delta}\, (0.5\leq x \leq 1)\) materials. J. Am. Ceram. Soc. 89(9):2895–2898 (2006)Google Scholar
  60. 60.
    C.-K. Lin, T.-T. Chen, Y.-P. Chyou, L.-K Chiang, Thermal stress analysis of a planar SOFC stack. J. Power Sources 164(1), 238–251 (2007)CrossRefGoogle Scholar
  61. 61.
    C.-K. Lin, L.-H. Huang, L.-K. Chiang, Y.-P Chyou, Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design. J. Power Sources 192(2), 515–524 (2009)CrossRefGoogle Scholar
  62. 62.
    L. Liu, G.-Y. Kim, A. Chandra, Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions. J. Power Sources 195(8), 2310–2318 (2010)CrossRefGoogle Scholar
  63. 63.
    W. Liu, X. Sun, M. Khaleel, Effect of creep of ferritic interconnect on long-term performance of solid oxide fuel cell stacks. Fuel Cells 10(4), 703–717 (2010)CrossRefGoogle Scholar
  64. 64.
    W. Liu, X. Sun, M. Khaleel, J. Qu, Global failure criteria for positive/electrolyte/negative structure of planar solid oxide fuel cell. J. Power Sources 192(2), 486–493 (2009)CrossRefGoogle Scholar
  65. 65.
    W. Liu, X. Sun, M.A Khaleel, Predicting Young’s modulus of glass/ceramic sealant for solid oxide fuel cell considering the combined effects of aging, micro-voids and self-healing. J. Power Sources 185(2), 1193–1200 (2008)CrossRefGoogle Scholar
  66. 66.
    W. Liu, X. Sun, E. Stephens, M. Khaleel, Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications. J. Power Sources 189(2), 1044–1050 (2009)CrossRefGoogle Scholar
  67. 67.
    X. Liu, C.L. Martin, G. Delette, D. Bouvard, Elasticity and strength of partially sintered ceramics. J. Mech. Phys. Solids 58(6), 829–842 (2010)CrossRefGoogle Scholar
  68. 68.
    Y. Liu, A. Hagen, R. Barfod, M. Chen, H. Wang, F. Poulsen, P. Hendriksen, Microstructural studies on degradation of interface between LSM-YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics 180(23–25), 1298–1304 (2009)CrossRefGoogle Scholar
  69. 69.
    F. Lowrie, R. Rawlings, Room and high temperature failure mechanisms in solid oxide fuel cell electrolytes. J. Eur. Ceram. Soc. 20(6), 751–760 (2000)CrossRefGoogle Scholar
  70. 70.
    A. Mai, V.A. Haanappel, S. Uhlenbruck, F. Tietz, D. Stöver, Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition. Solid State Ionics 176(15–16), 1341–1350 (2005)CrossRefGoogle Scholar
  71. 71.
    J. Malzbender, W. Fischer, R. Steinbrech, Studies of residual stresses in planar solid oxide fuel cells. J. Power Sources 182(2), 594–598 (2008)CrossRefGoogle Scholar
  72. 72.
    J. Malzbender, L. Singheiser, R. Steinbrech, A review of advanced techniques for characterising SOFC behaviour. Fuel Cells 9(6), 785–793 (2009)CrossRefGoogle Scholar
  73. 73.
    J. Malzbender, R. Steinbrech, L. Singheiser. Failure probability of solid oxide fuel cells, in Ceramic Engineering and Science Proceedings, vol. 26, pp. 293–298. American Ceramic Society, 2005Google Scholar
  74. 74.
    J. Malzbender, T. Wakui, R. Steinbrech, Curvature of planar solid oxide fuel cells during sealing and cooling of stacks. Fuel Cells 6(2), 123–129 (2006)CrossRefGoogle Scholar
  75. 75.
    J. Malzbender, E. Wessel, R. Steinbrech, Reduction and re-oxidation of anodes for solid oxide fuel cells. Solid State Ionics 176(29–30), 2201–2203 (2005)CrossRefGoogle Scholar
  76. 76.
    K. Meinhardt, D.-S. Kim, Y.-S. Chou, K. Weil, Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass-ceramic sealant. J. Power Sources 182(1), 188–196 (2008)CrossRefGoogle Scholar
  77. 77.
    D. Meixner, R. Cutler, Low-temperature plastic deformation of a perovskite ceramic material. Solid State Ionics 146(3–4), 285–300 (2002)CrossRefGoogle Scholar
  78. 78.
    N.H. Menzler, de L.G. Haart, D. Sebold, Characterization of cathode chromium incorporation during mid-term stack operation under various operational conditions. ECS Trans. 7(1), 245–254 (2007)CrossRefGoogle Scholar
  79. 79.
    J. Milhans, S. Ahzi, H. Garmestani, M. Khaleel, X. Sun, B. Koeppel, Modeling of the effective elastic and thermal properties of glass-ceramic solid oxide fuel cell seal materials. Mater. Des. 30(5), 1667–1673 (2009)CrossRefGoogle Scholar
  80. 80.
    A. Mitterdorfer, L.J. Gauckler, \(\hbox{La}_{2}\hbox{Zr}_{2}\hbox{O}_{7}\) formation and oxygen reduction kinetics of the \(\hbox{La}_{0.85}\hbox{Sr}_{0.15}\hbox{Mn}_{\rm y}\hbox{O}_3,\, \hbox{O}_{2}\hbox{(g)YSZ}\) system. Solid State Ionics 111(3–4), 185–218 (1998)Google Scholar
  81. 81.
    A. Morales-Rodriguez, A. Bravo-Leon, A. Dominguez-Rodriguez, S. Lopez-Esteban, J. Moya, M. Jimenez-Melendo, High-temperature mechanical properties of zirconia/nickel composites. J. Eur. Ceram. Soc. 23(15), 2849–2856 (2003)CrossRefGoogle Scholar
  82. 82.
    M. Mori, Effect of B-site doing on thermal cycle shrinkage for \(\hbox{La}_{0.8}\hbox{Sr}_{0.2}\hbox{Mn}_{1-{\rm x}}\hbox{M}_{\rm x}\hbox{O}_{3+\delta}\) perovskites (M= Mg, Al, Ti, Mn, Fe, Co, Ni; 0\(\leq\) x\(\leq\) 0.1). Solid State Ionics 174(1–4), 1–8 (2004)Google Scholar
  83. 83.
    M. Mori, Y. Hiei, N. Sammes, G. Tompsett, Thermal-expansion behaviors and mechanisms for Ca-or Sr-doped lanthanum manganite perovskites under oxidizing atmospheres. J. Electrochem. Soc. 147, 1295 (2000)CrossRefGoogle Scholar
  84. 84.
    M. Mori, T. Yamamoto, H. Itoh, H. Inaba, H. Tagawa, Thermal expansion of nickel–zirconia anodes in solid oxide fuel cells during fabrication and operation. J. Electrochem. Soc. 145, 1374 (1998)CrossRefGoogle Scholar
  85. 85.
    A. Müller, W. Becker, D. Stolten, J. Hohe, A hybrid method to assess interface debonding by finite fracture mechanics. Eng. Fract. Mech. 73(8), 994–1008 (2006)CrossRefGoogle Scholar
  86. 86.
    A. Nakajo, Thermomechanical and electrochemical degradation in anode-supported solid oxide fuel cell stacks. Ph.D Thesis, 4930, Ecole Polytechnique Fédérale de Lausanne, 2011Google Scholar
  87. 87.
    A. Nakajo, J. Kuebler, A. Faes, U.F. Vogt, H.J. Schindler, L.-K. Chiang, S. Modena, J. Van herle, T. Hocker, Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. constitutive materials of anode-supported cells. Ceram. Int. 38(5), 3907–3927 (2012)CrossRefGoogle Scholar
  88. 88.
    A. Nakajo, F. Mueller, J. Brouwer, J. Van herle, D. Favrat, Mechanical reliability and durability of SOFC stacks. Part I: modelling of the effect of operating conditions and design alternatives on the reliability. Int. J. Hydrogen Energy 37(11), 9249–9268 (2012)CrossRefGoogle Scholar
  89. 89.
    A. Nakajo, F. Mueller, J. Brouwer, J. Van herle, D. Favrat, Mechanical reliability and durability of SOFC stacks. Part II: modelling of mechanical failures during ageing and cycling. Int. J. Hydrogen Energy 37(11), 9269–9286 (2012)CrossRefGoogle Scholar
  90. 90.
    A. Nakajo, F. Mueller, J. Brouwer, J. Van herle, D. Favrat, Progressive activation of degradation processes in solid oxide fuel cells stacks: Part I: lifetime extension by optimisation of the operating conditions. J. Power Sources 216(0), 449–463 (2012)CrossRefGoogle Scholar
  91. 91.
    A. Nakajo, J. Van herle, D. Favrat, Sensitivity of stresses and failure mechanisms in SOFCs to the mechanical properties and geometry of the constitutive layers. Fuel Cells 11(4), 537–552 (2011)CrossRefGoogle Scholar
  92. 92.
    A. Nakajo, Z. Wuillemin, J. Van herle, D. Favrat, Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: probability of failure of the cells. J. Power Sources 193(1), 203–215 (2009)CrossRefGoogle Scholar
  93. 93.
    A. Nakajo, Z. Wuillemin, J. Van herle, D. Favrat, Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: loss of gas-tightness, electrical contact and thermal buckling. J. Power Sources 193(1), 216–226 (2009)CrossRefGoogle Scholar
  94. 94.
    N. Nemeth, J. Manderscheid, J. Gyekenyesi, Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual (1990)Google Scholar
  95. 95.
    B. Nguyen, B. Koeppel, S. Ahzi, M. Khaleel, S. Prabhakar, Crack growth in solid oxide fuel cell materials: from discrete to continuum damage modeling. J. Am. Ceram. Soc. 89(4), 1358–1368 (2006)CrossRefGoogle Scholar
  96. 96.
    O.B. Olurin, D.S. Wilkinson, G.C. Weatherly, V. Paserin, J. Shu, Strength and ductility of as-plated and sintered CVD nickel foams. Compos. Sci. Technol. 63(16), 2317–2329 (2003)CrossRefGoogle Scholar
  97. 97.
    S.M. Oppenheimer, D.C Dunand, Finite element modeling of creep deformation in cellular metals. Acta Materialia 55(11), 3825–3834 (2007)CrossRefGoogle Scholar
  98. 98.
    K. Park, S. Yu, J. Bae, H. Kim, Y. Ko, Fast performance degradation of SOFC caused by cathode delamination in long-term testing. Int. J. Hydrogen Energy 35(16), 8670–8677 (2010)CrossRefGoogle Scholar
  99. 99.
    M. Pihlatie, H. Frandsen, A. Kaiser, M. Mogensen, Continuum mechanics simulations of NiO/Ni-YSZ composites during reduction and re-oxidation. J. Power Sources 195(9), 2677–2690 (2010)CrossRefGoogle Scholar
  100. 100.
    M. Pihlatie, A. Kaiser, M. Mogensen, Mechanical properties of NiO/Ni–YSZ composites depending on temperature, porosity and redox cycling. J. Eur. Ceram. Soc. 29(9), 1657–1664 (2009)CrossRefGoogle Scholar
  101. 101.
    M. Pihlatie, T. Ramos, A. Kaiser, Testing and improving the redox stability of Ni-based solid oxide fuel cells. J. Power Sources 193(1), 322–330 (2009)CrossRefGoogle Scholar
  102. 102.
    M. Radovic, E. Lara-Curzio, Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen. Acta Materialia 52(20), 5747–5756 (2004)CrossRefGoogle Scholar
  103. 103.
    M. Radovic, E. Lara-Curzio, L. Riester, Comparison of different experimental techniques for determination of elastic properties of solids. Mater. Sci. Eng. A 368(1–2), 56–70 (2004)Google Scholar
  104. 104.
    J.L. Routbort, K.C. Goretta, R.E. Cook, J. Wolfenstine, Deformation of perovskite electronic ceramics—a review. Solid State Ionics 129(1–4), 53–62 (2000)CrossRefGoogle Scholar
  105. 105.
    K. Sato, K. Yashiro, T. Kawada, H. Yugami, T. Hashida, J. Mizusaki, Fracture process of nonstoichiometric oxide based solid oxide fuel cell under oxidizing/reducing gradient conditions. J. Power Sources 195(17), 5481–5486 (2010)CrossRefGoogle Scholar
  106. 106.
    A. Selcuk, A. Atkinson, Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 17(12), 1523–1532 (1997)CrossRefGoogle Scholar
  107. 107.
    A. Selimovic, M. Kemm, T. Torisson, M. Assadi, Steady state and transient thermal stress analysis in planar solid oxide fuel cells. J. Power Sources 145(2), 463–469 (2005)CrossRefGoogle Scholar
  108. 108.
    N. Shikazono, D. Kanno, K. Matsuzaki, H. Teshima, S. Sumino, N. Kasagi, Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images. J. Electrochem. Soc. 157(5), B665–B672 (2010)Google Scholar
  109. 109.
    D. Simwonis, F. Tietz, D. Stöver, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132(3–4), 241–251 (2000)CrossRefGoogle Scholar
  110. 110.
    E. Stephens, J. Vetrano, B. Koeppel, Y. Chou, X. Sun, M. Khaleel, Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models. J. Power Sources 193(2), 625–631 (2009)CrossRefGoogle Scholar
  111. 111.
    C. Stiller, B. Thorud, O. Bolland, R. Kandepu, L. Imsland, Control strategy for a solid oxide fuel cell and gas turbine hybrid system. J. Power Sources 158(1), 303–315 (2006)CrossRefGoogle Scholar
  112. 112.
    B. Sun, R. Rudkin, A. Atkinson, Effect of thermal cycling on residual stress and curvature of anode-supported SOFCs. Fuel Cells 9(6), 805–813 (2009)Google Scholar
  113. 113.
    Y. Suzue, N. Shikazono, N. Kasagi, Micro modeling of solid oxide fuel cell anode based on stochastic reconstruction. J. Power Sources 184(1), 52–59 (2008)CrossRefGoogle Scholar
  114. 114.
    R. Swindeman, M. Swindeman, A comparison of creep models for nickel base alloys for advanced energy systems. Int. J. Press. Vessels Pip. 85(1–2), 72–79 (2008)CrossRefGoogle Scholar
  115. 115.
    L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of \(\hbox{La}_{1-{\rm x}}\hbox{Sr}_{\rm x}\hbox{Co}_{1-{\rm y}}\hbox{Fe}_{\rm y}\hbox{O}_3.\) Part 1. The system \(\hbox{La}_{0.8}\hbox{Sr}_{0.2}\hbox{Co}_{1-{\rm y}}\hbox{Fe}_{\rm y}\hbox{O}_3\). Solid State Ionics 76(3–4), 259–271 (1995)Google Scholar
  116. 116.
    L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of \(\hbox{La}_{1-x}\hbox{Sr}_{\rm x}\hbox{Co}_{1-{\rm y}}\hbox{Fe}_{\rm y}\hbox{O}_3.\) Part 2. The system \(\hbox{La}_{1-{\rm x}}\hbox{Sr}_{\rm x}\hbox{Co}_{0.2}\hbox{Fe}_{0.8}\hbox{O}_3\). Solid State Ionics 76(3–4), 273–283 (1995)Google Scholar
  117. 117.
    N. Takano, M. Zako, F. Kubo, K. Kimura, Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling. Int. J. Solids Struct. 40(5), 1225–1242 (2003)MATHCrossRefGoogle Scholar
  118. 118.
    P. Tanasini, M. Cannarozzo, P. Costamagna, A. Faes, J. Van herle, A. Hessler-Wyser, C. Comninellis, Experimental and theoretical investigation of degradation mechanisms by particle coarsening in SOFC electrodes. Fuel Cells 9(5), 740–752 (2009)CrossRefGoogle Scholar
  119. 119.
    ThyssenKrupp. Material data sheet no. 4046.Google Scholar
  120. 120.
    F. Tietz, Thermal expansion of SOFC materials. Ionics 5(1), 129–139 (1999)CrossRefGoogle Scholar
  121. 121.
    S. Watanabe, F. Iguchi, J. Mizusaki, K. Sato, K. Yashiro, T. Kawada, Y. Takeyama, T. Hashida, Development of in-situ mechanical testing method for SOFC components. Proceedings of the ASME 2010 Eigth International Fuel Cell Science, 2010Google Scholar
  122. 122.
    W. Weibull, A statistical theory of the strength of materials. Proc. Roy. Swed. Inst. Eng. Res. 151, 1–45 (1939)Google Scholar
  123. 123.
    K. Weil, J. Hardy, J. Rice, J. Kim, Brazing as a means of sealing ceramic membranes for use in advanced coal gasification processes. Fuel 85(2), 156–162 (2006)CrossRefGoogle Scholar
  124. 124.
    K. Weil, B. Koeppel, Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs. J. Power Sources 180(1), 343–353 (2008)CrossRefGoogle Scholar
  125. 125.
    K. Weil, B. Koeppel, Thermal stress analysis of the planar SOFC bonded compliant seal design. Int. J. Hydrogen Energy 33(14), 3976–3990 (2008)CrossRefGoogle Scholar
  126. 126.
    K.S. Weil, C.A. Coyle, J.T. Darsell, G.G. Xia, J.S Hardy, Effects of thermal cycling and thermal aging on the hermeticity and strength of silver-copper oxide air-brazed seals. J. Power Sources 152, 97–104 (2005)CrossRefGoogle Scholar
  127. 127.
    K.S. Weil, C.A. Coyle, J.S. Hardy, J.Y. Kim, G.-G Xia, Alternative planar SOFC sealing concepts. Fuel Cells Bulletin 2004(5), 11–16 (2004)CrossRefGoogle Scholar
  128. 128.
    Z. Wuillemin, N. Autissier, A. Nakajo, M.-T. Luong, J. Van herle, D. Favrat, Modeling and study of the influence of sealing on a solid oxide fuel cell. J. Fuel Cell Sci. Technol. 5(1), 011016–9 (2008)CrossRefGoogle Scholar
  129. 129.
    H. Yakabe, Y. Baba, T. Sakurai, M. Satoh, I. Hirosawa, Y. Yoda, Evaluation of residual stresses in a SOFC stack. J. Power Sources 131(1–2), 278–284 (2004)CrossRefGoogle Scholar
  130. 130.
    H. Yakabe, Y. Baba, T. Sakurai, Y. Yoshitaka, Evaluation of the residual stress for anode-supported SOFCs. J. Power Sources 135(1–2), 9–16 (2004)CrossRefGoogle Scholar
  131. 131.
    H. Yakabe, I. Yasuda, Model analysis of the expansion behavior of \({\rm LaCrO}_{3}\) interconnector under solid oxide fuel cell operation. J. Electrochem. Soc. 150(1), A35–A45 (2003)Google Scholar
  132. 132.
    Z. Yang, M.S. Walker, P. Singh, J.W. Stevenson, T. Norby, Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions. J. Electrochem. Soc. 151(12), B669–B678 (2004)CrossRefGoogle Scholar
  133. 133.
    Z. Yang, K.S. Weil, D.M. Paxton, J.W Stevenson, Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J. Electrochem. Soc. 150(9), A1188–A1201 (2003)CrossRefGoogle Scholar
  134. 134.
    T. Zhang, Q. Zhu, W.L. Huang, Z. Xie, X. Xin, Stress field and failure probability analysis for the single cell of planar solid oxide fuel cells. J. Power Sources 182(2), 540–545 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Laboratoire d’Energétique Industrielle (LENI)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations