Skip to main content

Evidence-Based Cardiovascular Management of Patients Receiving Radiotherapy to the Heart

  • Chapter
  • First Online:
Book cover Evidence-Based Cardiology Consult

Abstract

Historic and modern oncologic therapy techniques have the potential to adversely affect cardiovascular function. Depending on the disease, cancer therapy often requires radiotherapy (RT) to the chest, cardiotoxic chemotherapy, or both. A history of (or ongoing) RT to the heart may complicate the cardiovascular management of a patient. Radiotherapy is often thought to be selectively toxic to rapidly dividing cell populations, suggesting that tissues such as the heart and vessels would be relatively resistant. However, long-term outcome studies and more recent advances in imaging have given us a better understanding of the risks for both early and late cardiovascular complications of RT. While modern RT planning and treatment have reduced the dose to the heart, the risk to the cardiovascular system still remains. This review will attempt to give the reader comprehensive, up-to-date knowledge of the risks of RT to the heart, advances in treatment, advances in imaging for detecting adverse changes to the heart and the additive effects of chemotherapy, and other comorbidities on the effects of RT. Detailed recommendations are given for both the primary care physician as well as the cardiovascular team when managing patients who have received or are receiving RT to the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schellong G, Riepenhausen M, Bruch C, Kotthoff S, Vogt J, Bolling T, et al. Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for Hodgkin disease in children and adolescents: report from the longitudinal GPOH follow-up project of the German-Austrian DAL-HD studies. Pediatr Blood Cancer. 2010;55(6):1145–52.

    Article  PubMed  Google Scholar 

  2. Harris JR, Hellman S. Put the hockey stick on ice. Int J Radiat Oncol Biol Phys. 1988;15(2):497–9.

    Article  PubMed  CAS  Google Scholar 

  3. Cuzick J, Stewart H, Peto R, Baum M, Fisher B, Host H, et al. Overview of randomized trials of postoperative adjuvant radiotherapy in breast-cancer. Cancer Treat Rep. 1987;71(1):15–29.

    PubMed  CAS  Google Scholar 

  4. Taylor CW, Nisbet A, McGale P, Goldman U, Darby SC, Hall P, et al. Cardiac doses from Swedish breast cancer radiotherapy since the 1950s. Radiother Oncol. 2009;90(1):127–35.

    Article  PubMed  Google Scholar 

  5. Evans SB, Sioshansi S, Moran MS, Hiatt J, Price LL, Wazer DE. Prevalence of poor cardiac anatomy in carcinoma of the breast treated with whole-breast radiotherapy: reconciling modern cardiac dosimetry with cardiac mortality data. Am J Clin Oncol. 2012;35(6):587–92.

    Article  PubMed  Google Scholar 

  6. Vallebona A. Cardiac damage following therapeutic chest irradiation. Importance, evaluation and treatment. Minerva Cardioangiol. 2000;48(3):79–87.

    PubMed  CAS  Google Scholar 

  7. Chiang CS, Hong JH, Stalder A, Sun JR, Withers HR, McBride WH. Delayed molecular responses to brain irradiation. Int J Radiat Biol. 1997;72(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  8. Chiang CS, McBride WH, Withers HR. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol. 1993;29(1):60–8.

    Article  PubMed  CAS  Google Scholar 

  9. Salloum E, Tanoue LT, Wackers FJ, Zelterman D, Hu GL, Cooper DL. Assessment of cardiac and pulmonary function in adult patients with Hodgkin’s disease treated with ABVD or MOPP/ABVD plus adjuvant low-dose mediastinal irradiation. Cancer Invest. 1999;17(3):171–80.

    Article  PubMed  CAS  Google Scholar 

  10. Vallis KA, Pintilie M, Chong N, Holowaty E, Douglas PS, Kirkbride P, et al. Assessment of coronary heart disease morbidity and mortality after radiation therapy for early breast cancer. J Clin Oncol. 2002;20(4):1036–42.

    Article  PubMed  Google Scholar 

  11. Roychoudhuri R, Robinson D, Putcha V, Cuzick J, Darby S, Moller H. Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: a population-based study. BMC Cancer. 2007;7:9.

    Article  PubMed  Google Scholar 

  12. Orzan F, Brusca A, Conte MR, Presbitero P, Figliomeni MC. Severe coronary artery disease after radiation therapy of the chest and mediastinum: clinical presentation and treatment. Br Heart J. 1993;69(6):496–500.

    Article  PubMed  CAS  Google Scholar 

  13. Renner SM, Massel D, Moon BC. Mediastinal irradiation: a risk factor for atherosclerosis of the internal thoracic arteries. Can J Cardiol. 1999;15(5):597–600.

    PubMed  CAS  Google Scholar 

  14. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–106.

    PubMed  CAS  Google Scholar 

  15. Gyenes G, Rutqvist LE, Liedberg A, Fornander T. Long-term cardiac morbidity and mortality in a randomized trial of pre- and postoperative radiation therapy versus surgery alone in primary breast cancer. Radiother Oncol. 1998;48(2):185–90.

    Article  PubMed  CAS  Google Scholar 

  16. Veinot JP, Edwards WD. Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996;27(8):766–73.

    Article  PubMed  CAS  Google Scholar 

  17. Fajardo LF, Stewart JR. Pathogenesis of radiation-induced myocardial fibrosis. Lab Invest. 1973;29(2):244–57.

    PubMed  CAS  Google Scholar 

  18. Fajardo LF, Stewart JR. Experimental radiation-induced heart disease. I. Light microscopic studies. Am J Pathol. 1970;59(2):299–316.

    PubMed  CAS  Google Scholar 

  19. Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, et al. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat Environ Biophys. 2010;49(2):139–53.

    Article  PubMed  CAS  Google Scholar 

  20. Machann W, Beer M, Breunig M, Stork S, Angermann C, Seufert I, et al. Cardiac magnetic resonance imaging findings in 20-year survivors of mediastinal radiotherapy for Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 2011;79(4):1117–23.

    Article  PubMed  Google Scholar 

  21. Pletcher MJ, Tice JA, Pignone M. Use of coronary calcification scores to predict coronary heart disease. JAMA. 2004;291(15):1831–2.

    PubMed  Google Scholar 

  22. Rademaker J, Schoder H, Ariaratnam NS, Strauss HW, Yahalom J, Steingart R, et al. Coronary artery disease after radiation therapy for Hodgkin’s lymphoma: coronary CT angiography findings and calcium scores in nine asymptomatic patients. AJR Am J Roentgenol. 2008;191(1):32–7.

    Article  PubMed  Google Scholar 

  23. Leeuwen-Segarceanu EM, Bos WJ, Dorresteijn LD, Rensing BJ, der Heyden JA, Vogels OJ, et al. Screening Hodgkin lymphoma survivors for radiotherapy induced cardiovascular disease. Cancer Treat Rev. 2011;37(5):391–403.

    Article  PubMed  Google Scholar 

  24. Mast ME, Heijenbrok MW, Petoukhova AL, Scholten AN, Schreur JH, Struikmans H. Preradiotherapy calcium scores of the coronary arteries in a cohort of women with early-stage breast cancer: a comparison with a cohort of healthy women. Int J Radiat Oncol Biol Phys. 2012;83(3):853–8.

    Article  PubMed  CAS  Google Scholar 

  25. Ikaheimo MJ, Niemela KO, Linnaluoto MM, Jakobsson MJ, Takkunen JT, Taskinen PJ. Early cardiac changes related to radiation therapy. Am J Cardiol. 1985;56(15):943–6.

    Article  PubMed  CAS  Google Scholar 

  26. Stoodley PW, Richards DA, Meikle SR, Clarke J, Hui R, Thomas L. The potential role of echocardiographic strain imaging for evaluating cardiotoxicity due to cancer therapy. Heart Lung Circ. 2011;20(1):3–9.

    Article  PubMed  Google Scholar 

  27. Erven K, Jurcut R, Weltens C, Giusca S, Ector J, Wildiers H, et al. Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. Int J Radiat Oncol Biol Phys. 2011;79(5):1444–51.

    Article  PubMed  Google Scholar 

  28. Dogan SM, Bilici HM, Bakkal H, Aydin M, Karabag T, Sayin MR, et al. The effect of radiotherapy on cardiac function. Coron Artery Dis. 2012;23:146–54.

    Article  PubMed  Google Scholar 

  29. Gayed IW, Liu HH, Wei X, Liao Z, Yusuf SW, Chang JY, et al. Patterns of cardiac perfusion abnormalities after chemoradiotherapy in patients with lung cancer. J Thorac Oncol. 2009;4(2):179–84.

    Article  PubMed  Google Scholar 

  30. Lind PA, Pagnanelli R, Marks LB, Borges-Neto S, Hu C, Zhou SM, et al. Myocardial perfusion changes in patients irradiated for left-sided breast cancer and correlation with coronary artery distribution. Int J Radiat Oncol Biol Phys. 2003;55(4):914–20.

    Article  PubMed  Google Scholar 

  31. Marks LB, Yu X, Prosnitz RG, Zhou SM, Hardenbergh PH, Blazing M, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63(1):214–23.

    Article  PubMed  Google Scholar 

  32. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107(9):1375–80.

    Article  PubMed  CAS  Google Scholar 

  33. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  PubMed  CAS  Google Scholar 

  34. Cardinale D, Sandri MT, Martinoni A, Borghini E, Civelli M, Lamantia G, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13(5):710–5.

    Article  PubMed  CAS  Google Scholar 

  35. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.

    Article  PubMed  CAS  Google Scholar 

  36. Cardinale D, Salvatici M, Sandri MT. Role of biomarkers in cardioncology. Clin Chem Lab Med. 2011;49(12):1937–48.

    Article  PubMed  CAS  Google Scholar 

  37. Hughes-Davies L, Sacks D, Rescigno J, Howard S, Harris J. Serum cardiac troponin T levels during treatment of early-stage breast cancer. J Clin Oncol. 1995;13(10):2582–4.

    PubMed  CAS  Google Scholar 

  38. D’Errico MP, Grimaldi L, Petruzzelli MF, Gianicolo EA, Tramacere F, Monetti A, et al. N-terminal pro-B-type natriuretic peptide plasma levels as a potential biomarker for cardiac damage after radiotherapy in patients with left-sided breast cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):e239–46.

    Article  PubMed  Google Scholar 

  39. Nellessen U, Zingel M, Hecker H, Bahnsen J, Borschke D. Effects of radiation therapy on myocardial cell integrity and pump function: which role for cardiac biomarkers? Chemotherapy. 2010;56(2):147–52.

    Article  PubMed  CAS  Google Scholar 

  40. Cardinale D, Cipolla CM. Assessment of cardiotoxicity with cardiac biomarkers in cancer patients. Herz. 2011;36(4):325–32.

    Article  PubMed  CAS  Google Scholar 

  41. Taylor CW, Nisbet A, McGale P, Darby SC. Cardiac exposures in breast cancer radiotherapy: 1950s-1990s. Int J Radiat Oncol Biol Phys. 2007;69(5):1484–95.

    Article  PubMed  Google Scholar 

  42. Giraud P, Cosset JM. Radiation toxicity to the heart: physiopathology and clinical data. Bull Cancer. 2004;91 Suppl 3:147–53.

    PubMed  Google Scholar 

  43. McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100(2):167–75.

    Article  PubMed  Google Scholar 

  44. Correa CR, Das IJ, Litt HI, Ferrari V, Hwang WT, Solin LJ, et al. Association between tangential beam treatment parameters and cardiac abnormalities after definitive radiation treatment for left-sided breast cancer. Int J Radiat Oncol Biol Phys. 2008;72(2):508–16.

    Article  PubMed  Google Scholar 

  45. Nilsson G, Holmberg L, Garmo H, Duvernoy O, Sjogren I, Lagerqvist B, et al. Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol. 2012;30(4):380–6.

    Article  PubMed  Google Scholar 

  46. Fajardo LF, Eltringham JR, Steward JR. Combined cardiotoxicity of adriamycin and x-radiation. Lab Invest. 1976;34(1):86–96.

    PubMed  CAS  Google Scholar 

  47. Eltringham JR, Fajardo LF, Stewart JR. Adriamycin cardiomyopathy: enhanced cardiac damage in rabbits with combined drug and cardiac irradiation. Radiology. 1975;115(2):471–2.

    PubMed  CAS  Google Scholar 

  48. Aleman BM, van den Belt-Dusebout AW, de Bruin ML, ‘t Veer MB, Baaijens MH, de Boer JP, et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood. 2007;109(5):1878–86.

    Article  PubMed  CAS  Google Scholar 

  49. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    Article  PubMed  CAS  Google Scholar 

  50. Hortobagyi GN, Frye D, Buzdar AU, Ewer MS, Fraschini G, Hug V, et al. Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer. 1989;63(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  51. Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. JAMA. 1993;270(16):1949–55.

    Article  PubMed  CAS  Google Scholar 

  52. Galper SL, Yu JB, Mauch PM, Strasser JF, Silver B, Lacasce A, et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood. 2011;117(2):412–8.

    Article  PubMed  CAS  Google Scholar 

  53. van Dalen EC, Caron HN, Kremer LC. Prevention of anthracycline-induced cardiotoxicity in children: the evidence. Eur J Cancer. 2007;43(7):1134–40.

    Article  PubMed  Google Scholar 

  54. Tan-Chiu E, Yothers G, Romond E, Geyer Jr CE, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23(31):7811–9.

    Article  PubMed  CAS  Google Scholar 

  55. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    Article  PubMed  CAS  Google Scholar 

  56. Gandhi S, Verma S. Aromatase inhibitors and cardiac toxicity: getting to the heart of the matter. Breast Cancer Res Treat. 2007;106(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  57. Bird BR, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res. 2008;14(1):14–24.

    Article  PubMed  CAS  Google Scholar 

  58. Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004;109(25):3122–31.

    Article  PubMed  Google Scholar 

  59. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  PubMed  CAS  Google Scholar 

  60. Stewart JR, Fajardo LF, Gillette SM, Constine LS. Radiation injury to the heart. Int J Radiat Oncol Biol Phys. 1995;31(5):1205–11.

    Article  PubMed  CAS  Google Scholar 

  61. Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin’s disease. An analysis of technique, tumor eradication, and complications. Cancer. 1976;37(6):2813–25.

    Article  PubMed  CAS  Google Scholar 

  62. Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76(3):S77–85.

    Article  PubMed  Google Scholar 

  63. Moser EC, Noordijk EM, van Leeuwen FE, le Cessie S, Baars JW, Thomas J, et al. Long-term risk of cardiovascular disease after treatment for aggressive non-Hodgkin lymphoma. Blood. 2006;107(7):2912–9.

    Article  PubMed  CAS  Google Scholar 

  64. Girinsky T, Ghalibafian M. Radiotherapy of Hodgkin lymphoma: indications, new fields, and techniques. Semin Radiat Oncol. 2007;17(3):206–22.

    Article  PubMed  Google Scholar 

  65. Campbell BA, Voss N, Pickles T, Morris J, Gascoyne RD, Savage KJ, et al. Involved-nodal radiation therapy as a component of combination therapy for limited-stage Hodgkin’s lymphoma: a question of field size. J Clin Oncol. 2008;26(32):5170–4.

    Article  PubMed  Google Scholar 

  66. Giordano SH, Kuo YF, Freeman JL, Buchholz TA, Hortobagyi GN, Goodwin JS. Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst. 2005;97(6):419–24.

    Article  PubMed  Google Scholar 

  67. Formenti SC, Gidea-Addeo D, Goldberg JD, Roses DF, Guth A, Rosenstein BS, et al. Phase I-II trial of prone accelerated intensity modulated radiation therapy to the breast to optimally spare normal tissue. J Clin Oncol. 2007;25(16):2236–42.

    Article  PubMed  Google Scholar 

  68. Smith W, Menon G, Wolfe N, Ploquin N, Trotter T, Pudney D. IMRT for the breast: a comparison of tangential planning techniques. Phys Med Biol. 2010;55(4):1231–41.

    Article  PubMed  Google Scholar 

  69. Cho BC, Hurkmans CW, Damen EM, Zijp LJ, Mijnheer BJ. Intensity modulated versus non-intensity modulated radiotherapy in the treatment of the left breast and upper internal mammary lymph node chain: a comparative planning study. Radiother Oncol. 2002;62(2):127–36.

    Article  PubMed  Google Scholar 

  70. Chen MH, Chuang ML, Bornstein BA, Gelman R, Harris JR, Manning WJ. Impact of respiratory maneuvers on cardiac volume within left-breast radiation portals. Circulation. 1997;96(10):3269–72.

    Article  PubMed  CAS  Google Scholar 

  71. Yoon GJ, Telli ML, Kao DP, Matsuda KY, Carlson RW, Witteles RM. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol. 2010;56(20):1644–50.

    Article  PubMed  Google Scholar 

  72. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13(5):699–709.

    Article  PubMed  CAS  Google Scholar 

  73. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    Article  PubMed  CAS  Google Scholar 

  74. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;(6):CD003917.

    Google Scholar 

  75. Lambert P, Da Costa A, Marcy PY, Kreps S, Angellier G, Marcie S, et al. Pacemaker, implanted cardiac defibrillator and irradiation: management proposal in 2010 depending on the type of cardiac stimulator and prognosis and location of cancer. Cancer Radiother. 2011;15(3):238–49.

    Article  PubMed  CAS  Google Scholar 

  76. Hudson F, Coulshed D, D’Souza E, Baker C. Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review. J Med Imaging Radiat Oncol. 2010;54(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  77. Wadasadawala T, Pandey A, Agarwal JP, Jalali R, Laskar SG, Chowdhary S, et al. Radiation therapy with implanted cardiac pacemaker devices: a clinical and dosimetric analysis of patients and proposed precautions. Clin Oncol (R Coll Radiol). 2011;23(2):79–85.

    Article  CAS  Google Scholar 

  78. Ferrara T, Baiotto B, Malinverni G, Caria N, Garibaldi E, Barboni G, et al. Irradiation of pacemakers and cardio-defibrillators in patients submitted to radiotherapy: a clinical experience. Tumori. 2010;96(1):76–83.

    PubMed  Google Scholar 

  79. Soejima T, Yoden E, NIshimura Y, Ono S, Yoshida A, Fukuda H, et al. Radiation therapy in patients with implanted cardiac pacemakers and implantable cardioverter defibrillators: a prospective survey in Japan. J Radiat Res. 2011;52(4):516–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Frazier Taylor MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Taylor, B.F., Evans, S.B., Roberts, K.B. (2014). Evidence-Based Cardiovascular Management of Patients Receiving Radiotherapy to the Heart. In: Stergiopoulos, K., Brown, D. (eds) Evidence-Based Cardiology Consult. Springer, London. https://doi.org/10.1007/978-1-4471-4441-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4441-0_28

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4440-3

  • Online ISBN: 978-1-4471-4441-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics