Research Pipeline II: Oral Therapeutics

  • Phoebe D. Lu
  • Joni M. Mazza


Recent insights into the pathophysiology of psoriasis have led to the identification of putative targets for pharmacological intervention. With the investigation for small molecule compounds that can inhibit or activate cellular signal transduction cascades, a number of new, promising targeted treatment options for psoriasis are being tested in clinical trials. Medications that are currently in phase III studies apremilast, CF101, tofacitinib, voclosporin, and LAS410008. Numerous other drugs targeting new and old pathogenic pathways are in phase II trials. This chapter will review some of the oral treatment options for psoriasis that are currently being investigated in phase II and III clinical studies.


Small molecules Oral medications Apremilast Tofacitinib Voclosporin CF101 


  1. 1.
    Houslay MD, Schafer P, Zhang KY. Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today. 2005;10(22):1503–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Schett G, et al. Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Ther Adv Musculoskelet Dis. 2010;2(5):271–8.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Tenor H, et al. Phosphodiesterase isoenzyme families in human osteoarthritis chondrocytes–functional importance of phosphodiesterase 4. Br J Pharmacol. 2002;135(3):609–18.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Schafer PH, Day RM. Novel systemic drugs for psoriasis: mechanism of action for apremilast, a specific inhibitor of PDE4. J Am Acad Dermatol. 2013;68(6):1041–2.PubMedCrossRefGoogle Scholar
  5. 5.
    Schafer P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem Pharmacol. 2012;83(12):1583–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Gottlieb AB, et al. An open-label, single-arm pilot study in patients with severe plaque-type psoriasis treated with an oral anti-inflammatory agent, apremilast. Curr Med Res Opin. 2008;24(5):1529–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Papp K, et al. A phase 2 study demonstrating the efficacy and safety of the oral therapy CC-10004 in subjects with moderate to severe psoriasis [abstract P2614]. J Am Acad Dermatol. 2008;58:AB3.Google Scholar
  8. 8.
    Schett G, et al. Oral apremilast in the treatment of active psoriatic arthritis: results of a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2012;64(10):3156–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Papp K, et al. Efficacy of apremilast in the treatment of moderate to severe psoriasis: a randomised controlled trial. Lancet. 2012;380(9843):738–46.PubMedCrossRefGoogle Scholar
  10. 10.
    van de Kerkhof PC. Apremilast: a step forward in the treatment of psoriasis? Lancet. 2012;380(9843):708–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Strand V, et al. Improvements in patient-reported outcomes with apremilast, an oral phosphodiesterase 4 inhibitor, in the treatment of moderate to severe psoriasis: results from a phase IIb randomized, controlled study. Health Qual Life Outcomes. 2013;11:82.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Introducing PALACE 4: a research study evaluating a new oral investigational drug designed to target the source of joint inflammation. 2012. Available from:
  13. 13.
  14. 14.
    Muller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta. 2011;1808(5):1290–308.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ochaion A, et al. The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol. 2009;258(2):115–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Rath-Wolfson L, et al. IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthritis. Clin Exp Rheumatol. 2006;24(4):400–6.PubMedGoogle Scholar
  17. 17.
    Baharav E, et al. Antiinflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J Rheumatol. 2005;32(3):469–76.PubMedGoogle Scholar
  18. 18.
    van Troostenburg AR, et al. Tolerability, pharmacokinetics and concentration-dependent hemodynamic effects of oral CF101, an A3 adenosine receptor agonist, in healthy young men. Int J Clin Pharmacol Ther. 2004;42(10):534–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Silverman MH, et al. Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: data from a phase II clinical trial. J Rheumatol. 2008;35(1):41–8.PubMedGoogle Scholar
  20. 20.
    David M, et al. Treatment of plaque-type psoriasis with oral CF101: data from an exploratory randomized phase 2 clinical trial. J Eur Acad Dermatol Venereol. 2012;26(3):361–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Ghoreschi K, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–43.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Boy MG, et al. Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J Invest Dermatol. 2009;129(9):2299–302.PubMedCrossRefGoogle Scholar
  23. 23.
    Kremer JM, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009;60(7):1895–905.PubMedCrossRefGoogle Scholar
  24. 24.
    Papp KA, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a Phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Mamolo C, et al. Tofacitinib (CP-690, 550), an oral Janus kinase inhibitor, improves patient-reported outcomes in a phase 2b, randomized, double-blind, placebo-controlled study in patients with moderate-to-severe psoriasis. J Eur Acad Dermatol Venereol. 2013;28(2):192–203.Google Scholar
  26. 26.
    Dumont FJ. ISAtx-247 (Isotechnika/Roche). Curr Opin Investig Drugs. 2004;5(5):542–50.PubMedGoogle Scholar
  27. 27.
    Abel MD, et al. ISATX247: a novel calcineurin inhibitor. J Heart Lung Transplant. 2001;20(2):161.PubMedCrossRefGoogle Scholar
  28. 28.
    Aspeslet L, et al. ISA(TX)247: a novel calcineurin inhibitor. Transplant Proc. 2001;33(1–2):1048–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Bissonnette R, et al. A randomized, multicenter, double-blind, placebo-controlled phase 2 trial of ISA247 in patients with chronic plaque psoriasis. J Am Acad Dermatol. 2006;54(3):472–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Papp K, et al. Efficacy of ISA247 in plaque psoriasis: a randomised, multicentre, double-blind, placebo-controlled phase III study. Lancet. 2008;371(9621):1337–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Gupta AK, et al. ISA247: quality of life results from a phase II, randomized, placebo-controlled study. J Cutan Med Surg. 2008;12(6):268–75.PubMedGoogle Scholar
  32. 32.
    Kunynetz R, et al. Quality of life in plaque psoriasis patients treated with voclosporin: a Canadian phase III, randomized, multicenter, double-blind, placebo-controlled study. Eur J Dermatol. 2011;21(1):89–94.PubMedGoogle Scholar
  33. 33.
    Sommerer C, Zeier M. AEB071–a promising immunosuppressive agent. Clin Transplant. 2009;23 Suppl 21:15–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Skvara H, et al. The PKC inhibitor AEB071 may be a therapeutic option for psoriasis. J Clin Invest. 2008;118(9):3151–9.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Feige E, et al. Modified phospholipids as anti-inflammatory compounds. Curr Opin Lipidol. 2010;21(6):525–9.PubMedCrossRefGoogle Scholar
  36. 36.
    VBL Therapeutics presents positive phase 2 data for VB-201 in psoriasis and atherosclerosis at the late-breaking abstract session of the American Academy of Dermatology 70th Annual Meeting. 2012. Available from:
  37. 37.
    Mendel I, et al. A Lecinoxoid, an oxidized phospholipid small molecule, constrains CNS autoimmune disease. J Neuroimmunol. 2010;226(1–2):126–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Clinical trials. 2012. Available from:
  39. 39.
    Kimball AB. Safety and efficacy of VB-201, a novel immune-modulator, on inflammation of atherosclerotic disease in patients with moderate to severe plaque psoriasis: a phase 2 randomized placebo controlled trial. In: American Academy of Dermatology 70th Annual Meeting, San Diego, 2012.Google Scholar
  40. 40.
    Camins A, et al. Sirtuin activators: designing molecules to extend life span. Biochim Biophys Acta. 2010;1799(10–12):740–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Blander G, et al. SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol. 2009;129(1):41–9.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Zhang P, et al. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur J Dermatol. 2011;21(4):552–7.PubMedGoogle Scholar
  43. 43.
    Sestito R, et al. STAT3-dependent effects of IL-22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation. FASEB J. 2011;25(3):916–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Hoffmann E, et al. Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man. Br J Clin Pharmacol. 2013;75(1):186–96.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78(4):1193–231.PubMedGoogle Scholar
  46. 46.
    Masuda S, et al. Evidence for the activation of 1alpha-hydroxyvitamin D2 by 25-hydroxyvitamin D-24-hydroxylase: delineation of pathways involving 1alpha,24-dihydroxyvitamin D2 and 1alpha,25-dihydroxyvitamin D2. Biochim Biophys Acta. 2006;1761(2):221–34.PubMedCrossRefGoogle Scholar
  47. 47.
    Johansen C, et al. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br J Dermatol. 2005;152(1):37–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Johansen C, et al. Preferential inhibition of the mRNA expression of p38 mitogen-activated protein kinase regulated cytokines in psoriatic skin by anti-TNFalpha therapy. Br J Dermatol. 2010;163(6):1194–204.PubMedCrossRefGoogle Scholar
  49. 49.
    Soegaard-Madsen L, et al. Adalimumab therapy rapidly inhibits p38 mitogen-activated protein kinase activity in lesional psoriatic skin preceding clinical improvement. Br J Dermatol. 2010;162(6):1216–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Herzinger T, et al. Sphingosine-1-phosphate signaling and the skin. Am J Clin Dermatol. 2007;8(6):329–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Rostami Yazdi M, Mrowietz U. Fumaric acid esters. Clin Dermatol. 2008;26(5):522–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Bovenschen HJ, Langewouters AM, van de Kerkhof PC. Dimethylfumarate for psoriasis: pronounced effects on lesional T-cell subsets, epidermal proliferation and differentiation, but not on natural killer T cells in immunohistochemical study. Am J Clin Dermatol. 2010;11(5):343–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Garcia-Caballero M, et al. Dimethylfumarate inhibits angiogenesis in vitro and in vivo: a possible role for its antipsoriatic effect? J Invest Dermatol. 2011;131(6):1347–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Fallah Arani S, et al. Fumarates vs. methotrexate in moderate to severe chronic plaque psoriasis: a multicentre prospective randomized controlled clinical trial. Br J Dermatol. 2011;164(4):855–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Schonefuss A, et al. Upregulation of cathepsin S in psoriatic keratinocytes. Exp Dermatol. 2010;19(8):e80–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Roche and BioCryst advance BCX-4208/R3421 into phase II psoriasis trial. [Press release] 2007/2012. Available from:
  57. 57.
    BioCryst Pharmaceuticals, I. Clinical pipeline. 2012. Available from:
  58. 58.
    Hoffmann-LaRoche. Pharmaceuticals pipeline. 2012. Available from:
  59. 59.
    Schmitt-Hoffmann AH, et al. Oral alitretinoin: a review of the clinical pharmacokinetics and pharmacodynamics. Expert Rev Clin Pharmacol. 2012;5(4):373–88.PubMedCrossRefGoogle Scholar
  60. 60.
    Marsland AM, et al. Interventions for chronic palmoplantar pustulosis. Cochrane Database Syst Rev. 2006;(1):CD001433.Google Scholar
  61. 61.
    Mrowietz U, van de Kerkhof PC. Management of palmoplantar pustulosis: do we need to change? Br J Dermatol. 2011;164(5):942–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Ruzicka T, et al. Efficacy and safety of oral alitretinoin (9-cis retinoic acid) in patients with severe chronic hand eczema refractory to topical corticosteroids: results of a randomized, double-blind, placebo-controlled, multicentre trial. Br J Dermatol. 2008;158(4):808–17.PubMedCrossRefGoogle Scholar
  63. 63.
    Irla N, Navarini AA, Yawalkar N. Alitretinoin abrogates innate inflammation in palmoplantar pustular psoriasis. Br J Dermatol. 2012;167(5):1170–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Ray WJ, et al. CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem. 1997;272(30):18702–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Heise R, et al. Skin retinoid concentrations are modulated by CYP26AI expression restricted to basal keratinocytes in normal human skin and differentiated 3D skin models. J Invest Dermatol. 2006;126(11):2473–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Stoppie P, et al. R115866 inhibits all-trans-retinoic acid metabolism and exerts retinoidal effects in rodents. J Pharmacol Exp Ther. 2000;293(1):304–12.PubMedGoogle Scholar
  67. 67.
    Verfaille CJ, et al. Oral R115866 in the treatment of moderate to severe plaque-type psoriasis. J Eur Acad Dermatol Venereol. 2007;21(8):1038–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Dubreuil P, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009;4(9):e7258.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Humbert M, et al. Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy. 2009;64(8):1194–201.PubMedCrossRefGoogle Scholar
  70. 70.
    Paul C, et al. Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am J Hematol. 2010;85(12):921–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Piette F, et al. Masitinib as an adjunct therapy for mild-to-moderate Alzheimer’s disease: a randomised, placebo-controlled phase 2 trial. Alzheimers Res Ther. 2011;3(2):16.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Tebib J, et al. Masitinib in the treatment of active rheumatoid arthritis: results of a multicentre, open-label, dose-ranging, phase 2a study. Arthritis Res Ther. 2009;11(3):R95.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Geyer HL, Tibes R, Mesa RA. JAK2 inhibitors and their impact in myeloproliferative neoplasms. Hematology. 2012;17 Suppl 1:S129–32.PubMedGoogle Scholar
  74. 74.
    Kohler J, et al. Lestaurtinib inhibits histone phosphorylation and androgen-dependent gene expression in prostate cancer cells. PLoS One. 2012;7(4):e34973.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of DermatologyIcahn School of Medicine at Mount Sinai, Mount Sinai Roosevelt, Mount Sinai St. Luke’s, Mount Sinai Beth IsraelNew YorkUSA
  2. 2.Department of DermatologyMount Sinai Beth Israel, Mount Sinai St. Luke’sNew YorkUSA

Personalised recommendations