Skip to main content

Hypoxic Preconditioning of Cardiac Progenitor Cells for Ischemic Heart

  • Chapter
  • First Online:
  • 1311 Accesses

Abstract

Ischemic heart disease is the leading cause of morbidity and mortality in western countries. According to the data from the American Heart Association, coronary artery disease causes about one of every six deaths in the United States. Each year, an estimated 785,000 Americans will have a new coronary attack, about 470,000 will have a recurrent attack, and an additional 195,000 will have a silent first myocardial infarction. Thus, approximately every 25 s, an American will have a coronary event; approximately every minute, someone will die of one [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Writing Group M, Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, et al. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.

    Article  PubMed  Google Scholar 

  2. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010;7(1):30–7.

    Article  PubMed  Google Scholar 

  3. Birnbaum Y, Chamoun AJ, Anzuini A, Lick SD, Ahmad M, Uretsky BF. Ventricular free wall rupture following acute myocardial infarction. Coron Artery Dis. 2003;14(6):463–70.

    Article  PubMed  Google Scholar 

  4. Wehrens XH, Doevendans PA. Cardiac rupture complicating ­myocardial infarction. Int J Cardiol. 2004;95(2–3):285–92.

    Article  PubMed  Google Scholar 

  5. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–67.

    Article  PubMed  Google Scholar 

  6. Katz AM. The cardiomyopathy of overload: an unnatural growth response. Eur Heart J. 1995;16(Suppl O):110–4.

    Article  PubMed  Google Scholar 

  7. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    Article  PubMed  CAS  Google Scholar 

  8. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003;100(21):12313–8.

    Article  PubMed  CAS  Google Scholar 

  9. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265(1):262–75.

    Article  PubMed  CAS  Google Scholar 

  10. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem. 2004;279(12):11384–91.

    Article  PubMed  CAS  Google Scholar 

  11. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95(9):911–21.

    Article  PubMed  CAS  Google Scholar 

  12. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433(7026):647–53.

    Article  PubMed  CAS  Google Scholar 

  13. Mouquet F, Pfister O, Jain M, Oikonomopoulos A, Ngoy S, Summer R, et al. Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res. 2005;97(11):1090–2.

    Article  PubMed  CAS  Google Scholar 

  14. Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM, Zhang X, et al. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res. 2007;100(4):536–44.

    Article  PubMed  CAS  Google Scholar 

  15. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908.

    Article  PubMed  Google Scholar 

  16. Dawn B, Bolli R. Cardiac progenitor cells: the revolution continues. Circ Res. 2005;97(11):1080–2.

    Article  PubMed  CAS  Google Scholar 

  17. Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109(8):941–61.

    Article  PubMed  CAS  Google Scholar 

  18. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57.

    Article  PubMed  Google Scholar 

  19. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5(6):877–89.

    Article  PubMed  CAS  Google Scholar 

  20. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127(6):1151–65.

    Article  PubMed  CAS  Google Scholar 

  21. van de Rijn M, Heimfeld S, Spangrude GJ, Weissman IL. Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. Proc Natl Acad Sci USA. 1989;86(12):4634–8.

    Article  PubMed  Google Scholar 

  22. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, et al. The role of the sca-1+/CD31 – cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells. 2006;24(7):1779–88.

    Article  PubMed  Google Scholar 

  23. Takamiya M, Haider KH, Ashraf M. Identification and characterization of a novel multipotent sub-population of Sca-1 cardiac progenitor cells for myocardial regeneration. PLoS One. 2011;6(9):e25265.

    Article  PubMed  CAS  Google Scholar 

  24. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    Article  PubMed  CAS  Google Scholar 

  25. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 2002;530(1–3):239–43.

    Article  PubMed  CAS  Google Scholar 

  26. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, et al. CD31 – But Not CD31+ cardiac side population cells exhibit ­functional cardiomyogenic differentiation. Circ Res. 2005;97(1):52–61.

    Article  PubMed  CAS  Google Scholar 

  27. Pfister O, Oikonomopoulos A, Sereti KI, Sohn RL, Cullen D, Fine GC, et al. Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res. 2008;103(8):825–35.

    Article  PubMed  CAS  Google Scholar 

  28. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904.

    Article  PubMed  Google Scholar 

  29. Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res. 2009;104(10):1209–16.

    Article  PubMed  CAS  Google Scholar 

  30. Li Z, Lee A, Huang M, Chun H, Chung J, Chu P, et al. Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol. 2009;53(14):1229–40.

    Article  PubMed  CAS  Google Scholar 

  31. Cohen ED, Wang Z, Lepore JJ, Lu MM, Taketo MM, Epstein DJ, et al. Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest. 2007;117(7):1794–804.

    Article  PubMed  CAS  Google Scholar 

  32. Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA. 2007;104(26):10894–9.

    Article  PubMed  CAS  Google Scholar 

  33. Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell. 2007;1(2):165–79.

    Article  PubMed  CAS  Google Scholar 

  34. Limana F, Germani A, Zacheo A, Kajstura J, Di Carlo A, Borsellino G, et al. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced ­cardiac C-kit+ cell proliferation and differentiation. Circ Res. 2005;97(8):e73–83.

    Article  PubMed  CAS  Google Scholar 

  35. Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474(7353):640–4.

    Article  PubMed  CAS  Google Scholar 

  36. Boni A, Urbanek K, Nascimbene A, Hosoda T, Zheng H, Delucchi F, et al. Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA. 2008;105(40):15529–34.

    Article  PubMed  CAS  Google Scholar 

  37. Gude N, Muraski J, Rubio M, Kajstura J, Schaefer E, Anversa P, et al. Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res. 2006;99(4):381–8.

    Article  PubMed  CAS  Google Scholar 

  38. Li M, Naqvi N, Yahiro E, Liu K, Powell PC, Bradley WE, et al. c-kit is required for cardiomyocyte terminal differentiation. Circ Res. 2008;102(6):677–85.

    Article  PubMed  CAS  Google Scholar 

  39. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perezde Prado A, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58(9):977–86.

    Article  PubMed  CAS  Google Scholar 

  40. Lu G, Haider HK, Jiang S, Ashraf M. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation. 2009;119(19):2587–96.

    Article  PubMed  Google Scholar 

  41. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107(7):913–22.

    Article  PubMed  CAS  Google Scholar 

  42. Goichberg P, Bai Y, D’Amario D, Ferreira-Martins J, Fiorini C, Zheng H, et al. The ephrin A1-EphA2 system promotes cardiac stem cell migration after infarction. Circ Res. 2011;108(9):1071–83.

    Article  PubMed  CAS  Google Scholar 

  43. Liang SX, Tan TY, Gaudry L, Chong B. Differentiation and migration of Sca1+/CD31 – cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol. 2010;138(1):40–9.

    Article  PubMed  Google Scholar 

  44. Matsuura K, Honda A, Nagai T, Fukushima N, Iwanaga K, Tokunaga M, et al. Transplantation of cardiac progenitor cells ­ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest. 2009;119(8):2204–17.

    PubMed  CAS  Google Scholar 

  45. van Oorschot AA, Smits AM, Pardali E, Doevendans PA, Goumans MJ. Low oxygen tension positively influences cardiomyocyte ­progenitor cell function. J Cell Mol Med. 2011;15(12):2723–34.

    Article  PubMed  Google Scholar 

  46. Abdollahi H, Harris LJ, Zhang P, McIlhenny S, Srinivas V, Tulenko T, et al. The role of hypoxia in stem cell differentiation and ­therapeutics. J Surg Res. 2011;165(1):112–7.

    Article  PubMed  CAS  Google Scholar 

  47. Semenza GL. Hypoxia – inducible factors in physiology and ­medicine. Cell. 2012;148(3):399–408.

    Article  PubMed  CAS  Google Scholar 

  48. Ytrehus K. Hypoxia-inducible factor 1 alpha: a new piece in the preconditioning puzzle. Cardiovasc Res. 2008;77(3):443–4.

    Article  PubMed  CAS  Google Scholar 

  49. Cameron CM, Harding F, Hu WS, Kaufman DS. Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood). 2008;233(8):1044–57.

    Article  CAS  Google Scholar 

  50. Francis KR, Wei L. Human embryonic stem cell neural ­differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis. 2010;1:e22.

    Article  PubMed  CAS  Google Scholar 

  51. Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135(4):799–808.

    Article  PubMed  CAS  Google Scholar 

  52. Zhao T, Zhang CP, Liu ZH, Wu LY, Huang X, Wu HT, et al. Hypoxia-driven proliferation of embryonic neural stem/progenitor cells–role of hypoxia-inducible transcription factor-1alpha. FEBS J. 2008;275(8):1824–34.

    Article  PubMed  CAS  Google Scholar 

  53. Han Y, Kuang SZ, Gomer A, Ramirez-Bergeron DL. Hypoxia influences the vascular expansion and differentiation of embryonic stem cell cultures through the temporal expression of vascular endothelial growth factor receptors in an ARNT-dependent manner. Stem Cells. 2010;28(4):799–809.

    Article  PubMed  Google Scholar 

  54. Stubbs SL, Hsiao ST, Peshavariya HM, Lim SY, Dusting GJ, Dilley RJ. Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev. 2012;21(11):1887–96.

    Article  PubMed  CAS  Google Scholar 

  55. Chacko SM, Ahmed S, Selvendiran K, Kuppusamy ML, Khan M, Kuppusamy P. Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol. 2010;299(6):C1562–70.

    Article  PubMed  CAS  Google Scholar 

  56. Liu H, Xue W, Ge G, Luo X, Li Y, Xiang H, et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun. 2010;401(4):509–15.

    Article  PubMed  CAS  Google Scholar 

  57. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury ­salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005;15(2):69–75.

    Article  PubMed  CAS  Google Scholar 

  58. Beguin PC, Belaidi E, Godin-Ribuot D, Levy P, Ribuot C. Intermittent hypoxia-induced delayed cardioprotection is mediated by PKC and triggered by p38 MAP kinase and Erk1/2. J Mol Cell Cardiol. 2007;42(2):343–51.

    Article  PubMed  CAS  Google Scholar 

  59. Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70(2):240–53.

    Article  PubMed  CAS  Google Scholar 

  60. Strohm C, Barancik T, Bruhl ML, Kilian SA, Schaper W. Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J Cardiovasc Pharmacol. 2000;36(2):218–29.

    Article  PubMed  CAS  Google Scholar 

  61. Speechly-Dick ME, Mocanu MM, Yellon DM. Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res. 1994;75(3):586–90.

    Article  PubMed  CAS  Google Scholar 

  62. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414–21.

    Article  PubMed  CAS  Google Scholar 

  63. Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation. 2005;111(9):1114–20.

    Article  PubMed  Google Scholar 

  64. Hu X, Wei L, Taylor TM, Wei J, Zhou X, Wang JA, et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol. 2011;301(2):C362–72.

    Article  PubMed  CAS  Google Scholar 

  65. Yu Z, Wang ZH, Yang HT. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2009;297(2):H735–42.

    Article  PubMed  CAS  Google Scholar 

  66. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202.

    Article  PubMed  Google Scholar 

  67. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest. 2005;115(3):572–83.

    PubMed  CAS  Google Scholar 

  68. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703.

    Article  PubMed  CAS  Google Scholar 

  69. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110(21):3300–5.

    Article  PubMed  Google Scholar 

  70. Zhang XF, Wang JF, Matczak E, Proper JA, Groopman JE. Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood. 2001;97(11):3342–8.

    Article  PubMed  CAS  Google Scholar 

  71. Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC. Signaling ­factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol. 2005;39(2):363–76.

    Article  PubMed  CAS  Google Scholar 

  72. Elmadbouh I, Haider H, Jiang S, Idris NM, Lu G, Ashraf M. Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2007;42(4):792–803.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21(12):3197–207.

    Article  PubMed  CAS  Google Scholar 

  74. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res. 2008;77(1):134–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 HL093439 and R01 HL113541 and American Heart Association grant 0430135N (to G.Q.) and the State Scholarship Fund of China (to S.X.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangjian Qin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Xu, S., Qin, G. (2013). Hypoxic Preconditioning of Cardiac Progenitor Cells for Ischemic Heart. In: Gabriel, E., Gabriel, S. (eds) Inflammatory Response in Cardiovascular Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4429-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4429-8_51

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4428-1

  • Online ISBN: 978-1-4471-4429-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics