Thromboembolism in Cyanotic Heart Disease: Mechanisms and Therapies



Thrombosis is formed in the presence of an abnormal vascular wall including endothelial damage and dysfunction, altered function of platelets and coagulation factors, and/or abnormal bloodstream. Once the endothelium has been injured and the blood exposed to the thrombogenic matrix, such as collagen, on the vascular wall, platelets adhere to the endothelium via platelet-glycoprotein (GP) interaction with von Willebrand factor on the vascular wall. After platelet adhesion, platelets are activated and bind to fibrinogen via GP 2b/3a receptors, and they release their granules into the bloodstream. Platelet activation and granule secretion result in further platelet aggregation and thrombin generation. Thrombin activates the coagulation cascade and platelets [1–4]. In addition to normal hemostasis, platelet activation may result in the pathologic process of thrombosis and inflammation.


Platelet Activation Thromboembolic Event Hypoplastic Left Heart Syndrome Primary Pulmonary Hypertension Increase Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin Thromb Hemost. 2005;31:381–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Lefer AM, Weyrich AS, Buerke M. Role of selectins, a new family of adhesion molecules, in ischemia-reperfusion injury. Cardiovasc Res. 1994;28:289–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Shaun RC. Thrombin signaling and protease-activated receptors. Nature. 2000;407:258–64.CrossRefGoogle Scholar
  4. 4.
    Palabrica T, Lobb R, Furie BC, Aronovitz M, Benjamin C, Hsu YM, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992;359:848–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Stenberg PE, McEver RP, Shuman MA, Jacoques YV, Bainton DF. A platelet alpha-granule membrane after activation. J Cell Biol. 1985;101:880–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Hrachovinová I, Cambien B, Hafezi-Moghadam A, Kappelmayer J, Camphausen RT, Widom A, et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med. 2003;9:1020–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Walker FJ, Fay PJ. Regulation of blood coagulation by the protein C system. FASEB J. 1992;6:2561–7.PubMedGoogle Scholar
  8. 8.
    Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989;264:4743–6.PubMedGoogle Scholar
  9. 9.
    Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, et al. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 1987;6:1991–7.Google Scholar
  10. 10.
    Cacoub P, Karmochkine M, Dorent R, Nataf P, Piette JC, Godeau P, et al. Plasma levels of thrombomodulin in pulmonary hypertension. Am J Med. 1996;101:160–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Perloff JK. Neurologic disorders. In: Perloff JK, Child JS, editors. Congenital heart disease in adults. 2nd ed. Philadelphia: W B Saunders; 1998. p. 237–46.Google Scholar
  12. 12.
    Ammash N, Warnes CA. Cerebrovascular events in adult patients with cyanotic congenital heart disease. J Am Coll Cardiol. 1996;28:768–72.PubMedGoogle Scholar
  13. 13.
    Candice KS, John TG, Eli K, Michelle AH. Pulmonary thrombosis in adults with Eisenmenger syndrome. J Am Coll Cardiol. 2003;42:1982–7.CrossRefGoogle Scholar
  14. 14.
    Levin E, Wu J, Devine DV, Alexander J, Reichart C, Sett S, et al. Hemostatic parameters and platelet activation marker expression in cyanotic and acyanotic pediatric patients undergoing cardiac surgery in the presence of tranexamic acid. Thromb Haemost. 2000;83:54–9.PubMedGoogle Scholar
  15. 15.
    Adatia I, Barrow SE, Stratton P, Ritter JM, Haworth SG. Abnormalities in the biosynthesis of thromboxane A2 and prostacyclin in children with cyanotic congenital heart disease. Br Heart J. 1993;69:179–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Horigome H, Murakami T, Isobe T, Nagasawa T, Matsui A. Soluble P-selectin and thrombomodulin-protein C-Protein S pathway in cyanotic congenital heart disease with secondary erythrocytosis. Thromb Res. 2003;112:223–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Kajimoto H, Nakazawa M, Murasaki K, Mori Y, Tanoue K, Kasanuki H, et al. Increased thrombogenicity in patients with cyanotic congenital heart disease. Circ J. 2007;71:948–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Horigome H, Hiramatsu Y, Shigeta O, Nagasawa T, Matsui A. Overproduction of platlet microparticles in cyanotic congenital heart disease with polycythemia. J Am Coll Cardiol. 2002;39:1072–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connoly RJ, Loscalzo J, et al. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci. 1996;93:11877–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferreiro CR, Chagas AC, Carvalho MH, Dantas AP, Jatene MB, Bento De Souza LC, et al. Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptive mechanism. Circulation. 2001;103:2272–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Kario K, Matsuo T, Kobayashi H, Asada R, Matsuo M. ‘Silent’ cerebral infarction is associated with hypercoagulability, endothelial cell damage, and high Lp(a) levels in elderly Japanese. Arterioscler Thromb Vasc Biol. 1996;16:734–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Minamino T, Kitakaze M, Sanada S, Asanuama H, Kurotobi T, Koretsune Y, et al. Increased expression of P-selectin on platelets is a risk factor for silent cerebral infarction in patients with atrial fibrillation: role of nitric oxide. Circulation. 1998;98:1721–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Merten M, Chow T, Hellums JD, Thiagarajan P. A new role for P-selectin in shear-induced platelet aggregation. Circulation. 2000;102:2045–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Cromme-Dijkhuis AH, Henkens CM, Bijleveld CM, Hillege HL, Bom VJ, van der Meer J. Coagulation factor abnormalities as possible thrombotic risk factors after Fontan operations. Lancet. 1990;336:1087–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Stamm C, Friehs I, Mayer Jr JE, Zurakowski D, Triedman JK, Moran AM, et al. Long-term results of the lateral tunnel Fontan operation. J Thorac Cardiovasc Surg. 2001;121:28–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Freedom RM, Hamilton R, Yoo SJ, Mikailian H, Benson L, McCrindle B, et al. The Fontan procedure: analysis of cohorts and late complications. Cardiol Young. 2000;10:307–31.PubMedGoogle Scholar
  27. 27.
    Seipelt RG, Franke A, Vazquez-Jimenez JF, Hanrath P, von Bernuth G, Messmer BJ, et al. Thromboembolic complications after Fontan procedures: comparison of different therapeutic approaches. Ann Thorac Surg. 2002;74:556–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Rosenthal DN, Friedman AH, Kleinman CS, Kopf GS, Rosenfeld LE, Hellenbrand WE. Thromboembolic complications after Fontan operations. Circulation. 1995;92(9 Suppl):II287–93.PubMedGoogle Scholar
  29. 29.
    Jahangiri M, Ross DB, Redington AN, Lincoln C, Shinebourne EA. Thromboembolism after the Fontan procedure and its modifications. Ann Thorac Surg. 1994;58:1409–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Jahangiri M, Shore D, Kakkar V, Lincoln C, Shinebourne E. Coagulation factor abnormalities after the Fontan procedure and its modifications. J Thorac Cardiovasc Surg. 1997;113:989–93.PubMedCrossRefGoogle Scholar
  31. 31.
    van Nieuwenhuizen RC, Peters M, Lubbers LJ, Trip MD, Tijssen JG, Mulder BJ. Abnormalities in liver function and coagulation profile following the Fontan procedure. Heart. 1999;82:40–6.PubMedGoogle Scholar
  32. 32.
    Ravn HB, Hjortdal VE, Stenbog EV, Emmertsen K, Kromann O, Pedersen J, et al. Increased platelet reactivity and significant changes in coagulation markers after cavopulmonary connection. Heart. 2001;85:61–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Kajimoto H, Nakazawa M, Murasaki K, Hagiwara N, Nakanishi T. Increased P-selectin expression on platelets and decreased plasma thrombomodulin in Fontan patients. Circ J. 2009;73(9):1705–10. Epub 2009 Jul 28.PubMedCrossRefGoogle Scholar
  34. 34.
    Jin SM, Noh CI, Bae EJ, Choi JY, Yun YS. Impaired vascular function in patients with Fontan circulation. Int J Cardiol. 2007;120:221–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Perloff JK, Marelli AJ, Miner PD. Risk of stroke in adults with cyanotic congenital heart disease. Circulation. 1993;87:1954–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Li JS, Yow E, Berezny KY, Rhodes JF, Bokesch PM, Charpie JR, et al. Clinical outcomes of palliative surgery including a systemic-to-pulmonary artery shunt in infants with cyanotic congenital heart disease: does aspirin make a difference? Circulation. 2007;116:293–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Motz R, Wessel A, Ruschewski W, Bürsch J. Reduced frequency of occlusion of aorto-pulmonary shunts in infants receiving aspirin. Cardiol Young. 1999;9:474–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Al Jubair KA, Al Fagih MR, Al Jarallah AS, Al Yousef S, Ali Khan MA, Ashmeg A, et al. Results of 546 Blalock-Taussig shunts performed in 478 patients. Cardiol Young. 1998;8:486–90.PubMedGoogle Scholar
  39. 39.
    Centazzo S, Montigny M, Davignon A, Chartrand C, Fournier A, Marchand T. Use of acetylsalicylic acid to improve patency of subclavian to pulmonary artery Gore-Tex shunts. Can J Cardiol. 1993;9:243–6.PubMedGoogle Scholar
  40. 40.
    Monagle P, Chaimers E, Chan A, Deveber G, Kirkham F, Massicotte P, et al. Antithrombotic therapy in neonates and children. Chest. 2008;133(suppl):887S–968.PubMedCrossRefGoogle Scholar
  41. 41.
    Marrone C, Galasso G, Piccolo R, de Leva F, Paladini R, Piscione F, et al. Antiplatelet versus anticoagulation therapy after extracardiac conduit Fontan: a systematic review and meta-analysis. Pediatr Cardiol. 2011;32(1):32–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Kaulitz R, Ziemer G, Rauch R, Girisch M, Bertram H, Wessel A, et al. Prophylaxis of thromboembolic complications after the Fontan operation (total cavopulmonary anastomosis). J Thorac Cardiovasc Surg. 2005;129(3):569–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Cheung YF, Chay GW, Chiu CS, Cheng LC. Long-term anticoagulation therapy and thromboembolic complications after the Fontan procedure. Int J Cardiol. 2005;102:509–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Jacobs ML, Pourmoghadam KK. Thromboembolism and the role of anticoagulation in the Fontan patient. Pediatr Cardiol. 2007;28(6): 457–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Binotto MA, Maeda NY, Lopes AA. Evidence of endothelial dysfunction in patients with functionally univentricular physiology before completion of the Fontan operation. Cardiol Young. 2005;15:26–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Li JS, Yow E, Berezny KY, Bokesch PM, Takahashi M, Graham Jr TP, et al. Dosing of clopidogrel for platelet inhibition in infants and young children: primary results of the Platelet Inhibition in Children On cLOpidogrel (PICOLO) trial. Circulation. 2008;117:553–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Pediatric CardiologyHeart Institute, Tokyo Women’s Medical UniversityShinjuku-ku, TokyoJapan

Personalised recommendations