Immunological Mechanisms of Inflammation

  • Nilo José Coêlho Duarte
  • Cyro Alves de Brito
  • Alberto José da Silva Duarte
Chapter

Abstract

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The World Health Organization has estimated that around 17.3 million people died from CVD in 2008, representing 30 % of all global deaths. Of these deaths, an estimated 7.3 million were due to coronary heart disease and 6.2 million to stroke [1].

Keywords

Permeability Migration Ischemia Cortisol Respiration 

References

  1. 1.
    Organization, W.H. Cardiovascular diseases (CVDs) fact sheet. 2011. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/index.html. Accessed Sept 2011.
  2. 2.
    Schmid-Schonbein GW. Analysis of inflammation. Annu Rev Biomed Eng. 2006;8:93–131.PubMedCrossRefGoogle Scholar
  3. 3.
    Murphy K, Travers P, Walport M. Janeway’s immunobiology (immunobiology: the immune system (Janeway)). New York: Garland Science; 2007.Google Scholar
  4. 4.
    Paul WE, Paul WE. Fundamental immunology. New York: Raven Press; 1984.Google Scholar
  5. 5.
    Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol. 2004;76(3):514–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Bowie AG, Haga IR. The role of Toll-like receptors in the host response to viruses. Mol Immunol. 2005;42(8):859–67.PubMedCrossRefGoogle Scholar
  8. 8.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Lauw FN, Caffrey DR, Golenbock DT. Of mice and man: TLR11 (finally) finds profilin. Trends Immunol. 2005;26(10):509–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.PubMedCrossRefGoogle Scholar
  11. 11.
    Li Y et al. Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. J Biol Chem. 2011;286(36):31308–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim SC et al. Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ Res. 2009;105(12):1186–95.PubMedCrossRefGoogle Scholar
  13. 13.
    de Brito CA, Goldoni AL, Sato MN. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response. Immunotherapy. 2009;1(5):883–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002;2(2):116–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol. 2002;2(12):933–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Agnello D et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol. 2003;23(3):147–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Dybdahl B et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through Toll-like receptor-4. Circulation. 2002;105(6):685–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Roumen RM et al. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg. 1993;218(6):769–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Baigrie RJ et al. Systemic cytokine response after major surgery. Br J Surg. 1992;79(8):757–60.PubMedCrossRefGoogle Scholar
  21. 21.
    De Mol Van Otterloo JC. The effects of aortic reconstruction and collagen impregnation of Dacron prostheses on the complement system. J Vasc Surg. 1992;16(5):774–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Brothers TE, Graham LM, Till GO. Systemic effects of prosthetic vascular graft implantation. Surgery. 1988;104(2):375–82.PubMedGoogle Scholar
  23. 23.
    Swartbol P et al. Aortobifemoral surgery induces complement activation and release of interleukin-6 but not tumour necrosis factor-alpha. Cardiovasc Surg. 1996;4(4):483–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Shepard AD et al. Complement activation by synthetic vascular prostheses. J Vasc Surg. 1984;1(6):829–38.PubMedGoogle Scholar
  25. 25.
    Bonfield TL et al. Cytokine and growth factor production by monocytes/macrophages on protein preadsorbed polymers. J Biomed Mater Res. 1992;26(7):837–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Rudensky B et al. The cellular immunological responses of patients undergoing coronary artery bypass grafting compared with those of patients undergoing valve replacement. Eur J Cardiothorac Surg. 2010;37(5):1056–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Gabriel EA et al. Analysis of the inflammatory response in endovascular treatment of aortic aneurysms. Eur J Cardiothorac Surg. 2007;31(3):406–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Duignan JP et al. The association of impaired neutrophil chemotaxis with postoperative surgical sepsis. Br J Surg. 1986;73(3):238–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Utoh J et al. Effect of surgery on neutrophil functions, superoxide and leukotriene production. Br J Surg. 1988;75(7):682–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Butler J, Rocker M, Westaby S. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1993;55(2):552–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Swartbol P, Truedsson L, Norgren L. The inflammatory response and its consequence for the clinical outcome following aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2001;21(5):393–400.PubMedCrossRefGoogle Scholar
  32. 32.
    Schumacher H, Huber FX, Aulmann M, Kallinowski F, Allenberg JR. Effect of endovascular surgery of infrarenal aortic aneurysms on circulating endothelial adhesion molecules, cytokines and proteinase inhibitors. Langenbecks Arch Chir Suppl Kongressbd. 1997;114:15–19.Google Scholar
  33. 33.
    Asimakopoulos G et al. Leukocyte integrin expression in patients undergoing cardiopulmonary bypass. Ann Thorac Surg. 2000;69(4):1192–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Fong Y et al. The biologic characteristics of cytokines and their implication in surgical injury. Surg Gynecol Obstet. 1990;170(4):363–78.PubMedGoogle Scholar
  35. 35.
    Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med. 1996;24(1):163–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Gilliland HE et al. The choice of anesthetic maintenance technique influences the antiinflammatory cytokine response to abdominal surgery. Anesth Analg. 1997;85(6):1394–8.PubMedGoogle Scholar
  37. 37.
    Dinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Froon AH et al. Increased concentrations of cytokines and adhesion molecules in patients after repair of abdominal aortic aneurysm. Eur J Surg. 1996;162(4):287–96.PubMedGoogle Scholar
  39. 39.
    van der Poll T et al. Hypercortisolemia increases plasma interleukin-10 concentrations during human endotoxemia – a clinical research center study. J Clin Endocrinol Metab. 1996;81(10):3604–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Steer JH, Vuong Q, Joyce DA. Suppression of human monocyte tumour necrosis factor-alpha release by glucocorticoid therapy: relationship to systemic monocytopaenia and cortisol suppression. Br J Clin Pharmacol. 1997;43(4):383–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Ogawa K et al. Suppression of cellular immunity by surgical stress. Surgery. 2000;127(3):329–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Ni Choileain N, Redmond HP. Cell response to surgery. Arch Surg. 2006;141(11):1132–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Rinder CS et al. Lymphocyte and monocyte subset changes during cardiopulmonary bypass: effects of aging and gender. J Lab Clin Med. 1997;129(6):592–602.PubMedCrossRefGoogle Scholar
  44. 44.
    Franke A et al. Hyporesponsiveness of T cell subsets after cardiac surgery: a product of altered cell function or merely a result of absolute cell count changes in peripheral blood? Eur J Cardiothorac Surg. 2006;30(1):64–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Sbrana S et al. Monitoring of monocyte functional state after extracorporeal circulation: a flow cytometry study. Cytometry B Clin Cytom. 2004;58(1):17–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Akbas H et al. Effects of coronary artery bypass grafting on cellular immunity with or without cardiopulmonary bypass: changes in lymphocytes subsets. Cardiovasc Surg. 2002;10(6):586–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Wehlin L et al. Activation of complement and leukocyte receptors during on- and off pump coronary artery bypass surgery. Eur J Cardiothorac Surg. 2004;25(1):35–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Jankovicova K et al. The effect of cardiac surgery on peripheral blood lymphocyte populations. Acta Medica (Hradec Kralove). 2008;51(1):25–9.Google Scholar
  49. 49.
    Franke A et al. Delayed recovery of human leukocyte antigen-DR expression after cardiac surgery with early non-lethal postoperative complications: only an epiphenomenon? Interact Cardiovasc Thorac Surg. 2008;7(2):207–11.PubMedCrossRefGoogle Scholar
  50. 50.
    Cheadle WG et al. HLA-DR antigen expression on peripheral blood monocytes correlates with surgical infection. Am J Surg. 1991;161(6):639–45.PubMedCrossRefGoogle Scholar
  51. 51.
    Strohmeyer JC et al. Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients. Cytometry B Clin Cytom. 2003;53(1):54–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Kawasaki T et al. Effects of epidural anaesthesia on surgical stress-induced immunosuppression during upper abdominal surgery. Br J Anaesth. 2007;98(2):196–203.PubMedCrossRefGoogle Scholar
  53. 53.
    Kawasaki T, Sata T. Perioperative innate immunity and its modulation. J UOEH. 2011;33(2):123–37.PubMedGoogle Scholar
  54. 54.
    Mayer K et al. Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis. Am J Respir Crit Care Med. 2003;167(10):1321–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Ziegler TR et al. Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med. 2005;31(8):1079–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Chao W. Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol. 2009;296(1):H1–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Frantz S, Ertl G, Bauersachs J. Toll-like receptor signaling in the ischemic heart. Front Biosci. 2008;13:5772–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Arslan F et al. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm. 2010;2010:704202.PubMedCrossRefGoogle Scholar
  59. 59.
    Midwood KS, Piccinini AM, Sacre S. Targeting Toll-like receptors in autoimmunity. Curr Drug Targets. 2009;10(11):1139–55.PubMedCrossRefGoogle Scholar
  60. 60.
    Chong AJ et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg. 2004;128(2):170–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Genain CP et al. Late complications of immune deviation therapy in a nonhuman primate. Science. 1996;274(5295):2054–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Gee JM et al. Long term immunologic consequences of experimental stroke and mucosal tolerance. Exp Transl Stroke Med. 2009;1:3.PubMedCrossRefGoogle Scholar
  63. 63.
    Hall GM, Desborough JP. Interleukin-6 and the metabolic response to surgery. Br J Anaesth. 1992;69(4):337–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Swartbol P, Truedsson L, Norgren L. Adverse reactions during endovascular treatment of aortic aneurysms may be triggered by interleukin 6 release from the thrombotic content. J Vasc Surg. 1998;28(4):664–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Juvonen J et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1997;17(11):2843–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med. 2003;348(25):2583–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Joosten LA et al. IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol. 1999;163(9):5049–55.PubMedGoogle Scholar
  68. 68.
    Abramson SB, Amin A. Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology (Oxford). 2002;41(9):972–80.CrossRefGoogle Scholar
  69. 69.
    Mertens M, Singh JA. Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol. 2009;36(6):1118–25.PubMedCrossRefGoogle Scholar
  70. 70.
    Abbate A et al. Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail. 2010;12(4):319–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Abbate A et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 2008;117(20):2670–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Bresnihan B, Cobby M. Clinical and radiological effects of anakinra in patients with rheumatoid arthritis. Rheumatology (Oxford). 2003;42 Suppl 2:ii22–8.Google Scholar
  73. 73.
    Schmitz J et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One. 2008;3(10):e3331.PubMedCrossRefGoogle Scholar
  75. 75.
    Kuchler AM et al. Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am J Pathol. 2008;173(4):1229–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Januzzi Jr JL et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50(7):607–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Martinez-Rumayor A et al. Soluble ST2 plasma concentrations predict 1-year mortality in acutely dyspneic emergency department patients with pulmonary disease. Am J Clin Pathol. 2008;130(4):578–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Rehman SU et al. Independent and incremental prognostic value of multimarker testing in acute dyspnea: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. Clin Chim Acta. 2008;392(1–2):41–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Shah RV et al. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ Heart Fail. 2009;2(4):311–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Dieplinger B et al. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin Biochem. 2010;43(9):714–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Weinberg EO et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Miller AM, Liew FY. The IL-33/ST2 pathway – A new therapeutic target in cardiovascular disease. Pharmacol Ther. 2011;131(2):179–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Nilo José Coêlho Duarte
    • 1
    • 2
  • Cyro Alves de Brito
    • 3
  • Alberto José da Silva Duarte
    • 1
    • 4
    • 2
    • 5
  1. 1.Clinical LaboratoryHospital do CoraçãoSão PauloBrazil
  2. 2.Central Laboratory of Hospital das Clínicas, Faculty of MedicineUniversity of São PauloSão PauloBrazil
  3. 3.Center of ImmunologyAdolfo Lutz InstituteSão PauloBrazil
  4. 4.Faculty of MedicineUniversity of São PauloSão PauloBrazil
  5. 5.Laboratory of Medical Investigation Unit 56, Faculty of MedicineUniversity of São PauloSão PauloBrazil

Personalised recommendations