Skip to main content

Modulation of Inflammatory Response in Cardiopulmonary Bypass

  • Chapter
  • First Online:
  • 1345 Accesses

Abstract

Cardiac surgery and cardiopulmonary bypass initiate a systemic inflammatory response largely determined by blood contact with foreign surfaces and the activation of complement. It is generally accepted that cardiopulmonary bypass initiates a whole-body inflammatory reaction varies, but the persistence of any degree of inflammation may be considered potentially harmful to the cardiac patient. The development of strategies to control the inflammatory following cardiac surgery is currently the focus of considerable research efforts. Diverse techniques including maintenance of hemodynamic stability, minimization of exposure to cardiopulmonary bypass circuitry, and pharmacologic and immunomodulatory agents have been examined in clinical studies. This chapter provides a brief overview of the various therapeutic strategies being used to modulate the inflammatory response initiated by cardiopulmonary bypass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg. 2002;21:232–44.

    Article  PubMed  CAS  Google Scholar 

  2. Raja SG, Dreyfus GD. Modulation of systemic inflammatory response after cardiac surgery. Asian Cardiovasc Thorac Ann. 2005;13:382–95.

    Article  PubMed  Google Scholar 

  3. Raja SG, Berg GA. Impact of off-pump coronary artery bypass surgery on systemic inflammation: current best available evidence. J Card Surg. 2007;22(5):445–55.

    Article  PubMed  Google Scholar 

  4. CEBM. Oxford centre for evidence based medicine. Available at http://www.cebm.net/index.aspx?o=1025. Accessed 7 Oct 2011.

  5. Lin CY, Yang TL, Hong GJ, Li CY, Lin FY, Tsai CS. Enhanced intracellular heat shock protein 70 expression of leukocytes and serum interleukins release: comparison of on-pump and off-pump coronary artery surgery. World J Surg. 2010;34:675–81.

    Article  PubMed  Google Scholar 

  6. Onorati F, Rubino AS, Nucera S, Foti D, Sica V, Santini F, et al. Off-pump coronary artery bypass surgery versus standard linear or pulsatile cardiopulmonary bypass: endothelial activation and inflammatory response. Eur J Cardiothorac Surg. 2010;37:897–904.

    Article  PubMed  Google Scholar 

  7. Serrano Jr CV, Souza JA, Lopes NH, Fernandes JL, Nicolau JC, Blotta MH, et al. Reduced expression of systemic proinflammatory and myocardial biomarkers after off-pump versus on-pump coronary artery bypass surgery: a prospective randomized study. J Crit Care. 2010;25:305–12.

    Article  PubMed  Google Scholar 

  8. Rasmussen BS, Laugesen H, Sollid J, Grønlund J, Rees SE, Toft E, et al. Oxygenation and release of inflammatory mediators after ­off-pump compared with after on-pump coronary artery bypass surgery. Acta Anaesthesiol Scand. 2007;51:1202–10.

    Article  PubMed  CAS  Google Scholar 

  9. Parolari A, Camera M, Alamanni F, Naliato M, Polvani GL, Agrifoglio M, et al. Systemic inflammation after on-pump and off-pump coronary bypass surgery: a one-month follow-up. Ann Thorac Surg. 2007;84:823–8.

    Article  PubMed  Google Scholar 

  10. Tatoulis J, Rice S, Davis P, Goldblatt JC, Marasco S. Patterns of postoperative systemic vascular resistance in a randomized trial of conventional on-pump versus off-pump coronary artery bypass graft surgery. Ann Thorac Surg. 2006;82:1436–44.

    Article  PubMed  Google Scholar 

  11. Cavalca V, Sisillo E, Veglia F, et al. Isoprostanes and oxidative stress in off-pump and on-pump coronary bypass surgery. Ann Thorac Surg. 2006;81:562–7.

    Article  PubMed  Google Scholar 

  12. Wehlin L, Vedin J, Vaage J, Lundahl J. Peripheral blood monocyte activation during coronary artery bypass grafting with or without cardiopulmonary bypass. Scand Cardiovasc J. 2005;39:78–86.

    Article  PubMed  Google Scholar 

  13. Wan IY, Arifi AA, Wan S, et al. Beating heart revascularization with or without cardiopulmonary bypass: evaluation of inflammatory response in a prospective randomized study. J Thorac Cardiovasc Surg. 2004;127:1624–31.

    Article  PubMed  Google Scholar 

  14. Wehlin L, Vedin J, Vaage J, Lundahl J. Activation of complement and leukocyte receptors during on- and off pump coronary artery bypass surgery. Eur J Cardiothorac Surg. 2004;25:35–42.

    Article  PubMed  Google Scholar 

  15. Dorman BH, Kratz JM, Multani MM, et al. A prospective, randomized study of endothelin and postoperative recovery in off-pump versus conventional coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2004;18:25–9.

    Article  PubMed  CAS  Google Scholar 

  16. Al-Ruzzeh S, Hoare G, Marczin N, et al. Off-pump coronary artery bypass surgery is associated with reduced neutrophil activation as measured by the expression of CD11b: a prospective randomized study. Heart Surg Forum. 2003;6:89–93.

    PubMed  Google Scholar 

  17. Møller CH, Steinbrüchel DA. Platelet function after coronary artery bypass grafting: is there a procoagulant activity after off-pump compared with on-pump surgery? Scand Cardiovasc J. 2003;37:149–53.

    Article  PubMed  Google Scholar 

  18. Jemielity MM, Perek B, Buczkowski P, Lesniewska K, Wiktorowicz K, Dyszkiewicz W. Inflammatory response following off-pump and on-pump coronary artery bypass grafting. Heart Surg Forum. 2003;6 Suppl 1:S40–1.

    Google Scholar 

  19. Okubo N, Hatori N, Ochi M, Tanaka S. Comparison of m-RNA expression for inflammatory mediators in leukocytes between on-pump and off-pump coronary artery bypass grafting. Ann Thorac Cardiovasc Surg. 2003;9:43–9.

    PubMed  Google Scholar 

  20. Wildhirt SM, Schulze C, Schulz C, et al. Reduction of systemic and cardiac adhesion molecule expression after off-pump versus conventional coronary artery bypass grafting. Shock. 2001;16 Suppl 1:55–9.

    Article  PubMed  Google Scholar 

  21. Schulze C, Conrad N, Schutz A, et al. Reduced expression of systemic proinflammatory cytokines after off-pump versus conventional coronary artery bypass grafting. Thorac Cardiovasc Surg. 2000;48:364–9.

    Article  PubMed  CAS  Google Scholar 

  22. Wildhirt SM, Schulze C, Conrad N, et al. Reduced myocardial cellular damage and lipid peroxidation in off-pump versus conventional coronary artery bypass grafting. Eur J Med Res. 2000;5:222–8.

    PubMed  CAS  Google Scholar 

  23. Gulielmos V, Menschikowski M, Dill H, et al. Interleukin-1, interleukin-6 and myocardial enzyme response after coronary artery bypass grafting – a prospective randomized comparison of the conventional and three minimally invasive surgical techniques. Eur J Cardiothorac Surg. 2000;18:594–601.

    Article  PubMed  CAS  Google Scholar 

  24. Czerny M, Baumer H, Kilo J, et al. Inflammatory response and myocardial injury following coronary artery bypass grafting with or without cardiopulmonary bypass. Eur J Cardiothorac Surg. 2000;17:737–42.

    Article  PubMed  CAS  Google Scholar 

  25. Ascione R, Lloyd CT, Underwood MJ, Lotto AA, Pitsis AA, Angelini GD. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann Thorac Surg. 2000;69:1198–204.

    Article  PubMed  CAS  Google Scholar 

  26. Diegeler A, Doll N, Rauch T. Humoral immune response during coronary artery bypass grafting: a comparison of limited approach, “off-pump” technique, and conventional cardiopulmonary bypass. Circulation. 2000;102(19 Suppl 3):III95–100.

    PubMed  CAS  Google Scholar 

  27. Matata BM, Sosnowski AW, Galinanes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation. Ann Thorac Surg. 2000;69:785–91.

    Article  PubMed  CAS  Google Scholar 

  28. Gu YJ, Mariani MA, van Oeveren W, Grandjean JG, Boonstra PW. Reduction of the inflammatory response in patients undergoing minimally invasive coronary artery bypass grafting. Ann Thorac Surg. 1998;65:420–4.

    Article  PubMed  CAS  Google Scholar 

  29. Fromes Y, Gaillard D, Ponzio O, et al. Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation. Eur J Cardiothorac Surg. 2002;22:527–33.

    Article  PubMed  Google Scholar 

  30. Gott VL, Whiffen JD, Dutton RC. Heparin bonding on colloidal graphite surfaces. Science. 1963;142:1297–8.

    Article  PubMed  CAS  Google Scholar 

  31. Gott VL, Daggett RL. Serendipity and the development of heparin and carbon surfaces. Ann Thorac Surg. 1999;68(3 Suppl):S19–22.

    Article  PubMed  CAS  Google Scholar 

  32. Warren OJ, Watret AL, de Wit KL, et al. The inflammatory response to cardiopulmonary bypass: part 2-anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth. 2009;23:384–93.

    Article  PubMed  CAS  Google Scholar 

  33. Ranucci M, Mazzucco A, Pessotto R, et al. Heparin-coated circuits for high-risk patients: a multicenter, prospective, randomized trial. Ann Thorac Surg. 1999;67:994–1000.

    Article  PubMed  CAS  Google Scholar 

  34. te Velthuis H, Baufreton C, Jansen PG, et al. Heparin coating of extracorporeal circuits inhibits contact activation during cardiac operations. J Thorac Cardiovasc Surg. 1997;114:117–22.

    Article  Google Scholar 

  35. Baufreton C, Moczar M, Intrator L, et al. Inflammatory response to cardiopulmonary bypass using two different types of heparin-coated extracorporeal circuits. Perfusion. 1998;13:419–27.

    Article  PubMed  CAS  Google Scholar 

  36. Lundblad R, Moen O, Fosse E. Endothelin-1 and neutrophil activation during heparin-coated cardiopulmonary bypass. Ann Thorac Surg. 1997;63:1361–7.

    Article  PubMed  CAS  Google Scholar 

  37. Fosse E, Thelin S, Svennevig JL, et al. Duraflo II coating of cardiopulmonary bypass circuits reduces complement activation, but does not affect the release of granulocyte enzymes: a European multicentre study. Eur J Cardiothorac Surg. 1997;11:320–7.

    Article  PubMed  CAS  Google Scholar 

  38. Boonstra PW, Gu YJ, Akkerman C, et al. Heparin coating of an extracorporeal circuit partly improves hemostasis after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1994;107:289–92.

    PubMed  CAS  Google Scholar 

  39. Mangoush O, Purkayastha S, Haj-Yahia S, et al. Heparin-bonded circuits versus nonheparin-bonded circuits: an evaluation of their effect on clinical outcomes. Eur J Cardiothorac Surg. 2007;31:1058–69.

    Article  PubMed  Google Scholar 

  40. Baker RA, Willcox TW. Australian and New Zealand perfusion survey: equipment and monitoring. J Extra Corpor Technol. 2006;38:220–9.

    PubMed  Google Scholar 

  41. Raja SG, Yousufuddin S, Rasool F, Nubi A, Danton M, Pollock J. Impact of modified ultrafiltration on morbidity after pediatric cardiac surgery. Impact of modified ultrafiltration on morbidity after pediatric cardiac surgery. Asian Cardiovasc Thorac Ann. 2006;14:341–50.

    Article  PubMed  Google Scholar 

  42. Hiramatsu T, Imai Y, Kurosawa H, et al. Effects of dilutional and modified ultrafiltration in plasma endothelin-1 and pulmonary vascular resistance after the Fontan procedure. Ann Thorac Surg. 2002;73:861–5.

    PubMed  Google Scholar 

  43. Chew MS, Brix-Christensen V, Ravn HB, et al. Effect of modified ultrafiltration on the inflammatory response in paediatric open-heart surgery: a prospective, randomized study. Perfusion. 2002;17:327–33.

    Article  PubMed  Google Scholar 

  44. Pearl JM, Manning PB, McNamara JL, Saucier MM, Thomas DW. Effect of modified ultrafiltration on plasma thromboxane B2, leukotriene B4, and endothelin-1 in infants undergoing cardiopulmonary bypass. Ann Thorac Surg. 1999;68:1369–75.

    Article  PubMed  CAS  Google Scholar 

  45. Portela F, Espanol R, Quintans J. Combined perioperative ultrafiltration in pediatric cardiac surgery. The preliminary results. Rev Esp Cardiol. 1999;52:1075–82.

    Article  PubMed  CAS  Google Scholar 

  46. Wang W, Huang HM, Zhu DM, Chen H, Su ZK, Ding WX. Modified ultrafiltration in paediatric cardiopulmonary bypass. Perfusion. 1998;13:304–10.

    Article  PubMed  CAS  Google Scholar 

  47. Journois D, Israel-Biet D, Pouard P, et al. High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology. 1996;85:965–76.

    Article  PubMed  CAS  Google Scholar 

  48. Journois D, Pouard P, Greeley WJ. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Effects on hemostasis, cytokines, and complement components. Anesthesiology. 1994;81:1181–9.

    Article  PubMed  CAS  Google Scholar 

  49. Saatvedt K, Lindberg H, Geiran OR, et al. Ultrafiltration after cardiopulmonary bypass in children: effects on hemodynamics, cytokines and complement. Cardiovasc Res. 1996;31:596–602.

    PubMed  CAS  Google Scholar 

  50. Luciani GB, Menon T, Vecchi B, et al. Modified ultrafiltration reduces morbidity after adult cardiac operations: a prospective, randomized clinical trial. Circulation. 2001;104(12 Suppl 1):I253–9.

    PubMed  CAS  Google Scholar 

  51. Grünenfelder J, Zünd G, Schoeberlein A, et al. Modified ultrafiltration lowers adhesion molecule and cytokine levels after cardiopulmonary bypass without clinical relevance in adults. Eur J Cardiothorac Surg. 2000;17:77–83.

    Article  PubMed  Google Scholar 

  52. Boodhwani M, Williams K, Babaev A, et al. Ultrafiltration reduces blood transfusions following cardiac surgery: a meta-analysis. Eur J Cardiothorac Surg. 2006;30:892–7.

    Article  PubMed  Google Scholar 

  53. Williams GD, Ramamoorthy C, Chu L, et al. Modified and conventional ultrafiltration during pediatric cardiac surgery: clinical outcomes compared. J Thorac Cardiovasc Surg. 2006;132:1291–8.

    Article  PubMed  Google Scholar 

  54. Gu YJ, de Vries AJ, Boonstra PW, van Oeveren W. Leukocyte depletion results in improved lung function and reduced inflammatory response after cardiac surgery. J Thorac Cardiovasc Surg. 1996;112:494–500.

    Article  PubMed  CAS  Google Scholar 

  55. Gu YJ, de Vries AJ, Vos P, Boonstra PW, van Oeveren W. Leukocyte depletion during cardiac operation: a new approach through the venous bypass circuit. Ann Thorac Surg. 1999;67:604–9.

    Article  PubMed  CAS  Google Scholar 

  56. Johnson D, Thomson D, Mycyk T, Burbridge B, Mayers I. Depletion of neutrophils by filter during aortocoronary bypass surgery transiently improves postoperative cardiorespiratory status. Chest. 1995;107:1253–9.

    Article  PubMed  CAS  Google Scholar 

  57. Morioka K, Muraoka R, Chiba Y, et al. Leukocyte and platelet depletion with a blood cell separator: effects on lung injury after cardiac surgery with cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1996;111:45–54.

    Article  PubMed  CAS  Google Scholar 

  58. Di Salvo C, Louca LL, Pattichis K, Hooper J, Walesby RK. Does activated neutrophil depletion on bypass by leukocyte filtration reduce myocardial damage? A preliminary report. J Cardiovasc Surg (Torino). 1996;37(6 Suppl 1):93–100.

    Google Scholar 

  59. Hurst T, Johnson D, Cujec B, et al. Depletion of activated neutrophils by a filter during cardiac valve surgery. Can J Anaesth. 1997;44:131–9.

    Article  PubMed  CAS  Google Scholar 

  60. Baksaas ST, Flom-Halvorsen HI, Ovrum E, et al. Leucocyte filtration during cardiopulmonary reperfusion in coronary artery bypass surgery. Perfusion. 1999;14:107–17.

    Article  PubMed  CAS  Google Scholar 

  61. Roth M, Kraus B, Scheffold T, et al. The effect of leukocyte-depleted blood cardioplegia in patients with severe left ventricular dysfunction: a randomized, double-blind study. J Thorac Cardiovasc Surg. 2000;120:642–50.

    Article  PubMed  CAS  Google Scholar 

  62. De Vecchi E, Paroni R, Pala MG, et al. Role of leucocytes in free radical production during myocardial revascularisation. Heart. 1997;77:449–55.

    PubMed  Google Scholar 

  63. Sawa Y, Taniguchi K, Kadoba K, et al. Leukocyte depletion attenuates reperfusion injury in patients with left ventricular hypertrophy. Circulation. 1996;93:1640–6.

    Article  PubMed  CAS  Google Scholar 

  64. Andersen KS, Nygreen EL, Grong K, Leirvaag B, Holmsen H. Comparison of the centrifugal and roller pump in elective coronary artery bypass surgery – a prospective, randomized study with special emphasis upon platelet activation. Scand Cardiovasc J. 2003;37:356–62.

    Article  PubMed  Google Scholar 

  65. Klein M, Dauben HP, Schulte HD, Gams E. Centrifugal pumping during routine open heart surgery improves clinical outcome. Artif Organs. 1998;22:326–36.

    Article  PubMed  CAS  Google Scholar 

  66. Klein M, Mahoney CB, Probst C, Schulte HD, Gams E. Blood product use during routine open heart surgery: the impact of the centrifugal pump. Artif Organs. 2001;25:300–5.

    Article  PubMed  CAS  Google Scholar 

  67. Menasché P, Peynet J, Haeffner-Cavaillon N. Influence of temperature on neutrophil trafficking during clinical cardiopulmonary bypass. Circulation. 1995;92(9 Suppl):II334–40.

    PubMed  Google Scholar 

  68. Birdi I, Caputo M, Underwood M, Bryan AJ, Angelini GD. The effects of cardiopulmonary bypass temperature on inflammatory response following cardiopulmonary bypass. Eur J Cardiothorac Surg. 1999;16:540–5.

    Article  PubMed  CAS  Google Scholar 

  69. McLean RF, Wong BI. Normothermic versus hypothermic cardiopulmonary bypass: central nervous system outcomes. J Cardiothorac Vasc Anesth. 1996;10:45–52.

    Article  PubMed  CAS  Google Scholar 

  70. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–90.

    Article  PubMed  Google Scholar 

  71. Wan S, LeClerc JL, Huynh CH, et al. Does steroid pretreatment increase endotoxin release during clinical cardiopulmonary bypass? J Thorac Cardiovasc Surg. 1999;117:1004–8.

    Article  PubMed  CAS  Google Scholar 

  72. Dernek S, Tunerir B, Sevin B, et al. The effects of methylprednisolone on complement, immunoglobulins and pulmonary neutrophil sequestration during cardiopulmonary bypass. Cardiovasc Surg. 1999;7:414–8.

    Article  PubMed  CAS  Google Scholar 

  73. Kawamura T, Inada K, Nara N, Wakusawa R, Endo S. Influence of methylprednisolone on cytokine balance during cardiac surgery. Crit Care Med. 1999;27:545–8.

    Article  PubMed  CAS  Google Scholar 

  74. Jansen NJ, van Oeveren W, van Vliet M, et al. The role of different types of corticosteroids on the inflammatory mediators in cardiopulmonary bypass. Eur J Cardiothorac Surg. 1991;5:211–7.

    Article  PubMed  CAS  Google Scholar 

  75. Tassani P, Richter JA, Barankay A, et al. Does high-dose methylprednisolone in aprotinin-treated patients attenuate the systemic inflammatory response during coronary artery bypass grafting procedures? J Cardiothorac Vasc Anesth. 1999;13:165–72.

    Article  PubMed  CAS  Google Scholar 

  76. Kawamura T, Inada K, Okada H, Okada K, Wakusawa R. Methylprednisolone inhibits increase of interleukin 8 and 6 during open heart surgery. Can J Anaesth. 1995;42:399–403.

    Article  PubMed  CAS  Google Scholar 

  77. Yilmaz M, Ener S, Akalin H, Sagdic K, Serdar OA, Cengiz M. Effect of low-dose methyl prednisolone on serum cytokine levels following extracorporeal circulation. Perfusion. 1999;14:201–6.

    Article  PubMed  CAS  Google Scholar 

  78. van Overveld FJ, De Jongh R, Jorens PG, et al. Pretreatment with methylprednisolone in coronary artery bypass grafting influences the levels of histamine and tryptase in serum but not in bronchoalveolar lavage fluid. Clin Sci (Lond). 1994;86:49–53.

    Google Scholar 

  79. Lodge AJ, Chai PJ, Daggett CW, Ungerleider RM, Jaggers J. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg. 1999;117:515–22.

    Article  PubMed  CAS  Google Scholar 

  80. Robertson-Malt S, Afrane B, El Barbary M. Prophylactic steroids for pediatric open heart surgery. Cochrane Database Syst Rev. 2007;(4):CD005550.

    Google Scholar 

  81. Dieleman JM, van Paassen J, van Dijk D, et al. Prophylactic corticosteroids for cardiopulmonary bypass in adults. Cochrane Database Syst Rev. 2011;(5):CD005566.

    Google Scholar 

  82. Eagle KA, Guyton RA, Davidoff R, American College of Cardiology; American Heart Association. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). Circulation. 2004;110:e340–437.

    Article  PubMed  Google Scholar 

  83. Castiglioni GC, Lojacono L, Tamborini G. Effects of trypsin and kallikrein inhibition in acute pancreatitis. Arch Ital Chir. 1965;91:365–76.

    PubMed  CAS  Google Scholar 

  84. Royston D, Bidstrup BP, Taylor KM, Sapsford RN. Effect of aprotinin on need for blood transfusion after repeat open-heart surgery. Lancet. 1987;2:1289–91.

    Article  PubMed  CAS  Google Scholar 

  85. Poullis M, Manning R, Laffan M, et al. The antithrombotic effect of aprotinin: actions mediated via the proteaseactivated receptor 1. J Thorac Cardiovasc Surg. 2000;120:370–8.

    Article  PubMed  CAS  Google Scholar 

  86. Greilich PE, Brouse CF, Whitten CW, et al. Antifibrinolytic therapy during cardiopulmonary bypass reduces proinflammatory cytokine levels: a randomized, double-blind, placebo-controlled study of epsilon-aminocaproic acid and aprotinin. J Thorac Cardiovasc Surg. 2003;126:1498–503.

    Article  PubMed  CAS  Google Scholar 

  87. Hill GE, Pohorecki R, Alonso A, Rennard SI, Robbins RA. Aprotinin reduces interleukin-8 production and lung neutrophil accumulation after cardiopulmonary bypass. Anesth Analg. 1996;83:696–700.

    PubMed  CAS  Google Scholar 

  88. Wendel HP, Heller W, Michel J, et al. Lower cardiac troponin T levels in patients undergoing cardiopulmonary bypass and receiving high-dose aprotinin therapy indicate reduction of perioperative myocardial damage. J Thorac Cardiovasc Surg. 1995;109:1164–72.

    Article  PubMed  CAS  Google Scholar 

  89. Levi M, Cromheecke ME, de Jonge E, et al. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet. 1999;354:1940–7.

    Article  PubMed  CAS  Google Scholar 

  90. Mangano DT, Tudor IC, Dietzel C, Multicenter Study of Perioperative Ischemia Research Group; Ischemia Research and Education Foundation. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65.

    Article  PubMed  CAS  Google Scholar 

  91. Karkouti K, Beattie WS, Dattilo KM, et al. A propensity score case–control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery. Transfusion. 2006;46:327–38.

    Article  PubMed  CAS  Google Scholar 

  92. Fergusson DA, Hébert PC, Mazer CD, BART Investigators. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358:2319–31.

    Article  PubMed  CAS  Google Scholar 

  93. Ray WA, Stein CM. The aprotinin story – is BART the final chapter? N Engl J Med. 2008;358:2398–400.

    Article  PubMed  CAS  Google Scholar 

  94. Sun SC, Appleyard R, Masetti P, et al. Improved recovery of heart transplants by combined use of oxygen-derived free radical scavengers and energy enhancement. J Thorac Cardiovasc Surg. 1992;104:830–7.

    PubMed  CAS  Google Scholar 

  95. Julia PL, Buckberg GD, Acar C, Partington MT, Sherman MP. Studies of controlled reperfusion after ischemia. XXI. Reperfusate composition: superiority of blood cardioplegia over crystalloid cardioplegia in limiting reperfusion damage-importance of endogenous oxygen free radical scavengers in red blood cells. J Thorac Cardiovasc Surg. 1991;101:303–13.

    PubMed  CAS  Google Scholar 

  96. Yau TM, Weisel RD, Mickle DA. Vitamin E for coronary bypass operations. A prospective, double-blind, randomized trial. J Thorac Cardiovasc Surg. 1994;108:302–10.

    PubMed  CAS  Google Scholar 

  97. Sisto T, Paajanen H, Metsä-Ketelä T, et al. Pretreatment with antioxidants and allopurinol diminishes cardiac onset events in coronary artery bypass grafting. Ann Thorac Surg. 1995;59:1519–23.

    Article  PubMed  CAS  Google Scholar 

  98. Fitch JC, Rollins S, Matis L, et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation. 1999;100:2499–506.

    Article  PubMed  CAS  Google Scholar 

  99. Soulika AM, Khan MM, Hattori T, et al. Inhibition of heparin/protamine complex-induced complement activation by Compstatin in baboons. Clin Immunol. 2000;96:212–21.

    Article  PubMed  CAS  Google Scholar 

  100. Kirschfink M. Controlling the complement system in inflammation. Immunopharmacology. 1997;38:51–62.

    Article  PubMed  CAS  Google Scholar 

  101. Takeuchi K, del Nido PJ, Ibrahim AE, et al. Vesnarinone and amrinone reduce the systemic inflammatory response syndrome. J Thorac Cardiovasc Surg. 1999;117:375–82.

    Article  PubMed  CAS  Google Scholar 

  102. Mollhoff T, Loick HM, Van Aken H, Schmidt C, Rolf N, Tjan TD, et al. Milrinone modulates endotoxemia, systemic inflammation, and subsequent acute phase response after cardiopulmonary bypass (CPB). Anesthesiology. 1999;90:72–80.

    Article  PubMed  CAS  Google Scholar 

  103. McNicol L, Andersen LW, Liu G, Doolan L, Baek L. Markers of splanchnic perfusion and intestinal translocation of endotoxins during cardiopulmonary bypass: effects of dopamine and milrinone. J Cardiothorac Vasc Anesth. 1999;13:292–8.

    Article  PubMed  CAS  Google Scholar 

  104. Berendes E, Mollhoff T, Van Aken H, et al. Effects of dopexamine on creatinine clearance, systemic inflammation, and splanchnic oxygenation in patients undergoing coronary artery bypass grafting. Anesth Analg. 1997;84:950–7.

    PubMed  CAS  Google Scholar 

  105. Sinclair DG, Houldsworth PE, Keogh B, Pepper J, Evans TW. Gastrointestinal permeability following cardiopulmonary bypass: a randomised study comparing the effects of dopamine and dopexamine. Intensive Care Med. 1997;23:510–6.

    Article  PubMed  CAS  Google Scholar 

  106. Shafique T, Johnson RG, Dai HB, Weintraub RM, Sellke FW. Altered pulmonary microvascular reactivity after total cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1993;106:479–86.

    PubMed  CAS  Google Scholar 

  107. Livelli Jr FD, Johnson RA, McEnany MT. Unexplained in-­hospital fever following cardiac surgery. Natural history, relationship to postpericardiotomy syndrome, and a prospective study of therapy with indomethacin versus placebo. Circulation. 1978;57:968–75.

    Article  PubMed  Google Scholar 

  108. Mobert J, Becker BF. Cyclooxygenase inhibition aggravates ischemia-reperfusion injury in the perfused guinea pig heart: involvement of isoprostanes. J Am Coll Cardiol. 1998;31:1687–94.

    Article  PubMed  CAS  Google Scholar 

  109. Hindman BJ, Moore SA, Cutkomp J, et al. Brain expression of inducible cyclooxygenase 2 messenger RNA in rats undergoing cardiopulmonary bypass. Anesthesiology. 2001;95:1380–8.

    Article  PubMed  CAS  Google Scholar 

  110. Erez E, Erman A, Snir E, et al. Thromboxane production in human lung during cardiopulmonary bypass: beneficial effect of aspirin? Ann Thorac Surg. 1998;65:101–6.

    Article  PubMed  CAS  Google Scholar 

  111. Sato K, Li J, Metais C, Bianchi C, Sellke F. Increased pulmonary vascular contraction to serotonin after cardiopulmonary bypass: role of cyclooxygenase. J Surg Res. 2000;90:138–43.

    Article  PubMed  CAS  Google Scholar 

  112. Yang X, Ma N, Szabolcs MJ, Zhong J, Athan E, Sciacca RR, et al. Upregulation of COX-2 during cardiac allograft rejection. Circulation. 2000;101:430–8.

    Article  PubMed  CAS  Google Scholar 

  113. Bouchard JF, Lamontagne D. Mechanisms of protection afforded by cyclooxygenase inhibitors to endothelial function against ischemic injury in rat isolated hearts. J Cardiovasc Pharmacol. 1999;34:755–63.

    Article  PubMed  CAS  Google Scholar 

  114. Grandel U, Fink L, Blum A, et al. Endotoxin-induced myocardial tumor necrosis factor-alpha synthesis depresses contractility of isolated rat hearts: evidence for a role of sphingosine and cyclooxygenase-2-derived thromboxane production. Circulation. 2000;102:2758–64.

    Article  PubMed  CAS  Google Scholar 

  115. Friedrich I, Silber RE, Baumann B, Fischer C, Holzheimer RG. IgM-enriched immunoglobulin preparation for immunoprophylaxis in cardiac surgery. Eur J Med Res. 2002;7:544–9.

    PubMed  Google Scholar 

  116. Opal SM, Gluck T. Endotoxinas a drug target. Crit Care Med. 2003;31(1 Suppl):S57–64.

    Article  PubMed  CAS  Google Scholar 

  117. Goldie AS, Fearon KC, Ross JA. Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. The Sepsis Intervention Group. JAMA. 1995;274:172–7.

    Article  PubMed  CAS  Google Scholar 

  118. Martinez-Pellus AE, Merino P, Bru M. Endogenous endotoxemia of intestinal origin during cardiopulmonary bypass. Role of type of flow and protective effect of selective digestive decontamination. Intensive Care Med. 1997;23:1251–7.

    Article  PubMed  CAS  Google Scholar 

  119. Nathens AB, Marshall JC. Selective decontamination of the digestive tract in surgical patients: a systematic review of the evidence. Arch Surg. 1999;134:170–6.

    Article  PubMed  CAS  Google Scholar 

  120. Engelman DT, Adams DH, Byrne JG, et al. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery. J Thorac Cardiovasc Surg. 1999;118:866–73.

    Article  PubMed  CAS  Google Scholar 

  121. Walesby RK, Goode AW, Bentall HH. Nutritional status of patients undergoing valve replacement by open heart surgery. Lancet. 1978;1:76–7.

    Article  PubMed  CAS  Google Scholar 

  122. Abel RM, Grimes JB, Alonso D, Alonso M, Gay WA. Adverse hemodynamic and ultrastructural changes in dog hearts subjected to protein-calorie malnutrition. Am Heart J. 1979;97:733–44.

    Article  PubMed  CAS  Google Scholar 

  123. Gianotti L, Braga M, Vignali A, et al. Effect of route of delivery and formulation of postoperative nutritional support in patients undergoing major operations for malignant neoplasms. Arch Surg. 1997;132:1222–30.

    Article  PubMed  CAS  Google Scholar 

  124. Braga M, Gianotti L, Radaelli G, et al. Perioperative immunonutrition in patients undergoing cancer surgery: results of a randomized double-blind phase 3 trial. Arch Surg. 1999;134:428–33.

    Article  PubMed  CAS  Google Scholar 

  125. Griffiths RD. Outcome of critically ill patients after supplementation with glutamine. Nutrition. 1997;13:752–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad G. Raja BSc, MBBS, MRCS, FRCS(C-Th) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Raja, S.G. (2013). Modulation of Inflammatory Response in Cardiopulmonary Bypass. In: Gabriel, E., Gabriel, S. (eds) Inflammatory Response in Cardiovascular Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4429-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4429-8_27

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4428-1

  • Online ISBN: 978-1-4471-4429-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics