Skip to main content

Inflammation, Thrombogenesis, Fibrinolysis, and Vein Wall Remodeling After Deep Venous Thrombosis

  • Chapter
  • First Online:
Inflammatory Response in Cardiovascular Surgery

Abstract

Venous thromboembolism and its sequelae, postthrombotic syndrome and chronic thromboembolic pulmonary hypertension, affect millions of people worldwide. The purpose of this chapter is to present recent and current research focused on defining the mechanism that drives vein wall remodeling aftervenous thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitchens CS, Alving BM, Kessler CM. Consultative hemostasis and thrombosis. Philadelphia: W.B. Saunders Co.; 2002.

    Google Scholar 

  2. Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton 3rd LJ. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998;158(6):585–93.

    Article  PubMed  CAS  Google Scholar 

  3. Heit JA. The epidemiology of venous thromboembolism in the community: implications for prevention and management. J Thromb Thrombolysis. 2006;21(1):23–9.

    Article  PubMed  Google Scholar 

  4. Heit JA, Cohen AT, Anderson Jr FA, on Behalf of the VTE Impact Assessment Group. Estimated annual number of incident and recurrent, non-fatal and fatal Venous Thromboembolism (VTE) Events in the US (abstract). Blood. 2005;106(11):910.

    Google Scholar 

  5. Virchow R. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin, vol. 520–525. Frankfurt: A M Von Meidinger Sohn; 1856.

    Google Scholar 

  6. Stewart GJ, Ritchie WG, Lynch PR. Venous endothelial damage produced by massive sticking and emigration of leukocytes. Am J Pathol. 1974;74(3):507–32.

    PubMed  CAS  Google Scholar 

  7. Sacher RA. Thrombophilia: a genetic predisposition to thrombosis. Trans Am Clin Climatol Assoc. 1999;110:51–60; discussion 61.

    PubMed  CAS  Google Scholar 

  8. Schulman S, Lindmarker P, Holmstrom M, Larfars G, Carlsson A, Nicol P, et al. Post-thrombotic syndrome, recurrence, and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months. J Thromb Haemost. 2006;4(4):734–42.

    Article  PubMed  CAS  Google Scholar 

  9. McRae S, Tran H, Schulman S, Ginsberg J, Kearon C. Effect of patient’s sex on risk of recurrent venous thromboembolism: a meta-analysis. Lancet. 2006;368(9533):371–8.

    Article  PubMed  Google Scholar 

  10. Cushman M, Tsai AW, White RH, Heckbert SR, Rosamond WD, Enright P, et al. Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. Am J Med. 2004;117(1):19–25.

    Article  PubMed  Google Scholar 

  11. Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol. 2008;28(3):387–91.

    Article  PubMed  CAS  Google Scholar 

  12. Stanley JC, Veith FJ, Wakefield TW (editors) Current Therapy in Vascular and Endovascular Surgery, 5th edition. Elsevier (in press).

    Google Scholar 

  13. Deroo S, Deatrick KB, Henke PK. The vessel wall: a forgotten player in post thrombotic syndrome. Thromb Haemost. 2010;104(4):681–92.

    Article  PubMed  CAS  Google Scholar 

  14. Myers Jr D, Farris D, Hawley A, Wrobleski S, Chapman A, Stoolman L, et al. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J Surg Res. 2002;108(2):212–21.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111(11):5271–81.

    Article  PubMed  CAS  Google Scholar 

  16. Andre P, Hartwell D, Hrachovinova I, Saffaripour S, Wagner DD. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc Natl Acad Sci USA. 2000;97(25):13835–40.

    Article  PubMed  CAS  Google Scholar 

  17. Ahn ER, Lander G, Jy W, Bidot CJ, Jimenez JJ, Horstman LL, et al. Differences of soluble CD40L in sera and plasma: implications on CD40L assay as a marker of thrombotic risk. Thromb Res. 2004;114(2):143–8.

    Article  PubMed  CAS  Google Scholar 

  18. Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J, Eschwege V, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol. 1994;153(7):3245–55.

    PubMed  CAS  Google Scholar 

  19. Myers DD, Wakefield TW. Inflammation-dependent thrombosis. Front Biosci. 2005;10:2750–7.

    Article  PubMed  CAS  Google Scholar 

  20. Pluskota E, Woody NM, Szpak D, Ballantyne CM, Soloviev DA, Simon DI, et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood. 2008;112(6):2327–35.

    Article  PubMed  CAS  Google Scholar 

  21. Andrews RK, Berndt MC. Microparticles facilitate neutrophil/platelet crosstalk. Blood. 2008;112(6):2174–5.

    Article  PubMed  CAS  Google Scholar 

  22. Osanai T, Akutsu N, Fujita N, Nakano T, Takahashi K, Guan W, et al. Cross talk between prostacyclin and nitric oxide under shear in smooth muscle cell: role in monocyte adhesion. Am J Physiol Heart Circ Physiol. 2001;281(1):H177–82.

    PubMed  CAS  Google Scholar 

  23. Wojcik BM, Wrobleski SK, Hawley AE, Wakefield TW, Myers Jr DD, Diaz JA. Interleukin-6: a potential target for post-thrombotic syndrome. Ann Vasc Surg. 2011;25(2):229–39.

    Article  PubMed  Google Scholar 

  24. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    Article  PubMed  CAS  Google Scholar 

  25. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41.

    Article  PubMed  CAS  Google Scholar 

  26. Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009;30(11):513–21.

    Article  PubMed  CAS  Google Scholar 

  27. Wartha F, Henriques-Normark B. ETosis: a novel cell death pathway. Sci Signal. 2008;1(21):e25.

    Article  Google Scholar 

  28. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–5.

    Article  PubMed  CAS  Google Scholar 

  29. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–9.

    Article  PubMed  CAS  Google Scholar 

  30. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers Jr DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5.

    Article  PubMed  CAS  Google Scholar 

  31. Meier TR, Myers Jr DD, Wrobleski SK, Zajkowski PJ, Hawley AE, Bedard PW, et al. Prophylactic P-selectin inhibition with PSI-421 promotes resolution of venous thrombosis without anticoagulation. Thromb Haemost. 2008;99(2):343–51.

    PubMed  CAS  Google Scholar 

  32. Adelman B, Michelson AD, Loscalzo J, Greenberg J, Handin RI. Plasmin effect on platelet glycoprotein Ib-von Willebrand factor interactions. Blood. 1985;65(1):32–40.

    PubMed  CAS  Google Scholar 

  33. Crowther MA, Roberts J, Roberts R, Johnston M, Stevens P, Skingley P, et al. Fibrinolytic variables in patients with recurrent venous thrombosis: a prospective cohort study. Thromb Haemost. 2001;85(3):390–4.

    PubMed  CAS  Google Scholar 

  34. Akar N, Yilmaz E, Akar E, Avcu F, Yalcin A, Cin S. Effect of plasminogen activator inhibitor-1 4G/5G polymorphism in Turkish deep vein thrombotic patients with and without FV1691 G-A. Thromb Res. 2000;97(4):227–30.

    Article  PubMed  CAS  Google Scholar 

  35. Zoller B, Garcia de Frutos P, Dahlback B. A common 4G allele in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene as a risk factor for pulmonary embolism and arterial thrombosis in hereditary protein S deficiency. Thromb Haemost. 1998;79(4):802–7.

    PubMed  CAS  Google Scholar 

  36. Gresele P. Platelets in thrombotic and non-thrombotic disorders: pathophysiology, pharmacology, and therapeutics. Cambridge/New York: Cambridge University Press; 2002.

    Book  Google Scholar 

  37. Diaz JA, Ballard-Lipka NE, Farris DM, Hawley AE, Wrobleski SK, Myers DD, et al. Impaired fibrinolytic system in ApoE gene-deleted mice with hyperlipidemia augments deep vein thrombosis. J Vasc Surg. 2012;55:815–22.

    Article  PubMed  Google Scholar 

  38. Varma MR, Moaveni DM, Dewyer NA, Varga AJ, Deatrick KB, Kunkel SL, et al. Deep vein thrombosis resolution is not accelerated with increased neovascularization. J Vasc Surg. 2004;40(3):536–42.

    Article  PubMed  Google Scholar 

  39. Henke PK, Pearce CG, Moaveni DM, Moore AJ, Lynch EM, Longo C, et al. Targeted deletion of CCR2 impairs deep vein thrombosis resolution in a mouse model. J Immunol. 2006;177(5):3388–97.

    PubMed  CAS  Google Scholar 

  40. Deatrick KB, Eliason JL, Lynch EM, Moore AJ, Dewyer NA, Varma MR, et al. Vein wall remodeling after deep vein thrombosis involves matrix metalloproteinases and late fibrosis in a mouse model. J Vasc Surg. 2005;42(1):140–8.

    Article  PubMed  Google Scholar 

  41. Myers Jr DD, Henke PK, Bedard PW, Wrobleski SK, Kaila N, Shaw G, et al. Treatment with an oral small molecule inhibitor of P selectin (PSI-697) decreases vein wall injury in a rat stenosis model of venous thrombosis. J Vasc Surg. 2006;44(3):625–32.

    Article  PubMed  Google Scholar 

  42. Patterson KA, Zhang X, Wrobleski SK, Hawley AE, Lawrence DA, Wakefield TW, et al. Rosuvastatin reduced deep vein thrombosis in ApoE gene deleted mice with hyperlipidemia through non-lipid lowering effects. Thromb Res. 2012 Dec 28 (in press).

    Article  PubMed  Google Scholar 

  43. Glynn RJ, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr, Kastelein JJ, et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med. 2009;360(18):1851–1861.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author’s would like to thank Dr. Katherine Shuster for her careful edits of this book chapter. Financial support was obtained from the Jobst Foundation Grant (to JAD and DDM).

Conflicts of InterestThe authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Antonio Diaz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Diaz, J.A., Myers, D.D. (2013). Inflammation, Thrombogenesis, Fibrinolysis, and Vein Wall Remodeling After Deep Venous Thrombosis. In: Gabriel, E., Gabriel, S. (eds) Inflammatory Response in Cardiovascular Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4429-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4429-8_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4428-1

  • Online ISBN: 978-1-4471-4429-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics