Advertisement

Metalloproteinases in Acute Venous Occlusion

  • Anita C. ThomasEmail author
Chapter

Abstract

Acute venous thrombosis is a life-threatening event proceeding from altered blood flow, abnormalities in the vessel wall, and changes in blood components (Virchow’s triad). Aberrations in the coagulatory and fibrinolytic pathways contribute to the altered blood components, but other blood proteases also have roles to play.

Keywords

Vein Graft Varicose Vein CD40 Ligand Tissue Factor Pathway Inhibitor Fibrinolytic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AP

Antiplasmin

AT

Antithrombin

col

Collagen

DVT

Deep vein thrombosis

ECM

Extracellular matrix

F

Factor

GF

Growth factor

IFN

Interferon

IL

Interleukin

LDL

Low density lipoprotein

LPS

Lipopolysaccharide

LRP

Low density lipoprotein receptor-related protein

MG

Macroglobulin

MMP

Matrix metalloproteinase

PAI

Plasminogen activator inhibitor

PDGF

Platelet-derived growth factor

ROS

Reactive oxygen species

TF

Tissue factor

TFPI

Tissue factor pathway inhibitor

TGF

Transforming growth factor

TIMP

Tissue inhibitor of metalloproteinase

TLR

Toll-like receptor

TM

Thrombomodulin

TNF

Tissue necrosis factor

tPA

Tissue plasminogen activator

uPA

Urokinase plasminogen activator

vWF

von Willebrand factor

References

  1. 1.
    Jerjes-Sanchez C. Venous and arterial thrombosis: a continuous spectrum of the same disease? Eur Heart J. 2005;26:3–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85:1–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behaviour. Annu Rev Cell Dev Biol. 2001;17:463–516.PubMedCrossRefGoogle Scholar
  5. 5.
    McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore. Curr Opin Cell Biol. 2001;13:534–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Ugwu F, Lemmens G, Collen D, Lijnen HR. Matrix metalloproteinase deficiencies do not impair cell-associated fibrinolytic activity. Thromb Res. 2001;102:61–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Lijnen HR. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry. 2002;67:92–8.PubMedGoogle Scholar
  8. 8.
    Belaaouaj AA, Li A, Wun TC, Welgus HG, Shapiro SD. Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. J Biol Chem. 2000;275:27123–8.PubMedGoogle Scholar
  9. 9.
    Lijnen HR. Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001;936:226–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Kluft C. The fibrinolytic system and thrombotic tendency. Pathophysiol Haemost Thromb. 2003;33:425–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases. Circ Res. 2003;92:827–39.PubMedCrossRefGoogle Scholar
  12. 12.
    Deatrick KB, Eliason JL, Lynch EM, Moore AJ, Dewyer NA, Varma MR, et al. Vein wall remodeling after deep vein thrombosis involves matrix metalloproteinases and late fibrosis in a mouse model. J Vasc Surg. 2005;42:140–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Lim CS, Shalhoub J, Gohel MS, Shepherd AC, Davies AH. Matrix metalloproteinases in vascular disease – a potential therapeutic target? Curr Vasc Pharmacol. 2010;8:75–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Dewyer NA, Sood V, Lynch EM, Luke CE, Upchurch GR, Wakefield TW, et al. Plasmin inhibition increases MMP-9 activity and decreases vein wall stiffness during venous thrombosis resolution. J Surg Res. 2007;142:357–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Nosaka M, Ishida Y, Kimura A, Kondo T. Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med. 2010;124:439–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee SW, Song KE, Shin DS, Ahn SM, Ha ES, Kim DJ, et al. Alterations in peripheral blood levels of TIMP-1, MMP-2, and MMP-9 in patients with type-2 diabetes. Diabetes Res Clin Pract. 2005;69:175–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Gharagozlian S, Svennevig K, Bangstad HJ, Winberg JO, Kolset S. Matrix metalloproteinases in subjects with type 1 diabetes. BMC Clin Pathol. 2009;9:7.PubMedCrossRefGoogle Scholar
  18. 18.
    Jung K, Klotzek S, Stephan C, Mannello F, Lein M. Impact of blood sampling on the circulating matrix metalloproteinases 1, 2, 3, 7, 8, and 9. Clin Chem. 2008;54:772–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Wohner N. Role of cellular elements in thrombus formation and dissolution. Cardiovasc Hematol Agents Med Chem. 2008;6:224–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Weisel JW, Litvinov RI. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Hematol Agents Med Chem. 2008;6:161–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Jurasz P, Chung AW, Radomski A, Radomski MW. Nonremodeling properties of matrix metalloproteinases: the platelet connection. Circ Res. 2002;90:1041–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Fernandez-Patron C, Martinez-Cuesta MA, Salas E, Sawicki G, Wozniak M, Radomski MW, et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and −2. Thromb Haemost. 1999;82:1730–5.PubMedGoogle Scholar
  23. 23.
    Galt SW, Lindemann S, Allen L, Medd DJ, Falk JM, McIntyre TM, et al. Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet function. Circ Res. 2002;90:1093–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Bourin MC, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J. 1993;289:313–30.PubMedGoogle Scholar
  26. 26.
    Zheng PS, Reis M, Sparling C, Lee DY, La Pierre DP, Wong CKA, et al. Versican G3 domain promotes blood coagulation through suppressing the activity of tissue factor pathway inhibitor-1. J Biol Chem. 2006;281:8175–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaneider NC, Mosheimer B, Gunther A, Feistritzer C, Wiedermann CJ. Enhancement of fibrinogen-triggered pro-coagulant activation of monocytes in vitro by matrix metalloproteinase-9. Thromb J. 2010;8:2.PubMedCrossRefGoogle Scholar
  28. 28.
    Reel B, Sala-Newby GB, Huang WC, Newby AC. Diverse patterns of cyclooxygenase-independent metalloproteinase gene regulation in human monocytes. Br J Pharmacol. 2011;163:1679–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Schonbeck U, Mach F, Sukhova GK, Atkinson E, Levesque E, Herman M, et al. Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. J Exp Med. 1999;189:843–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Chase AJ, Bond M, Crook MF, Newby AC. Role of nuclear factor-kB activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler Thromb Vasc Biol. 2002;22:765–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol. 2003;23:769–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Thomas AC, Sala-Newby GB, Ismail Y, Johnson JL, Pasterkamp G, Newby AC. Genomics of foam cells and nonfoamy macrophages from rabbits identifies arginase-I as a differential regulator of nitric oxide production. Arterioscler Thromb Vasc Biol. 2007;27:571–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol. 2008;28:2108–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost. 2009;101:1006–11.PubMedGoogle Scholar
  35. 35.
    Li D, Liu L, Chen H, Sawamura T, Mehta JL. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23:816–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Woodside KJ, Hu M, Burke A, Murakami M, Pounds LL, Killewich LA, et al. Morphologic characteristics of varicose veins: possible role of metalloproteinases. J Vasc Surg. 2003;38:162–9.PubMedCrossRefGoogle Scholar
  37. 37.
    George SJ, Zaltsman AB, Newby AC. Surgical preparative injury and neointima formation increase MMP-9 expression and MMP-2 activation in human saphenous vein. Cardiovasc Res. 1997;33: 447–59.PubMedCrossRefGoogle Scholar
  38. 38.
    Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res. 2003;92:e80–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Fabunmi RP, Baker AH, Murray EJ, Booth RF, Newby AC. Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1, -2, and -3 in rabbit aortic smooth muscle cells. Biochem J. 1996;315:335–42.PubMedGoogle Scholar
  40. 40.
    Hobeika MJ, Thompson RW, Muhs BE, Brooks PC, Gagne PJ. Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg. 2007;45:849–57.PubMedCrossRefGoogle Scholar
  41. 41.
    Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribo M, et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage. Stroke. 2004;35:1316–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Suzuki Y, Nagai N, Umemura K. Novel situations of endothelial injury in stroke – mechanisms of stroke and strategy of drug development: intracranial bleeding associated with the treatment of ischemic stroke: thrombolytic treatment of ischemia-affected endothelial cells with tissue-type plasminogen activator. J Pharmacol Sci. 2011;116:25–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, et al. MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab. 2004;24:1133–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Thomas AC, Newby AC. Effect of matrix metalloproteinase-9 knockout on vein graft remodelling in mice. J Vasc Res. 2010;47: 299–308.PubMedCrossRefGoogle Scholar
  45. 45.
    Dahi S, Lee JG, Lovett DH, Sarkar R. Differential transcriptional activation of matrix metalloproteinase-2 and membrane type-1 matrix metalloproteinase by experimental deep venous thrombosis and thrombin. J Vasc Surg. 2005;42:539–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol. 2008;28:387–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Deatrick KB, Elfline M, Baker N, Luke CE, Blackburn S, Stabler C, et al. Postthrombotic vein wall remodeling: preliminary observations. J Vasc Surg. 2011;53:139–46.PubMedCrossRefGoogle Scholar
  48. 48.
    John MA, Elms MJ, O’Reilly EJ, Rylatt DB, Bundesen PG, Hillyard CJ. The simpliRED D dimer test: a novel assay for the detection of crosslinked fibrin degradation products in whole blood. Thromb Res. 1990;58:273–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Sood V, Luke CE, Deatrick KB, Baldwin J, Miller EM, Elfline M, et al. Urokinase plasminogen activator independent early experimental thrombus resolution: MMP2 as an alternative mechanism. Thromb Haemost. 2010;104:1174–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Monaco S, Gioia M, Rodriguez J, Fasciglione GF, Di PD, Lupidi G, et al. Modulation of the proteolytic activity of matrix metalloproteinase-2 (gelatinase A) on fibrinogen. Biochem J. 2007;402:503–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J Biol Chem. 2000;275:33008–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Raffetto JD, Qiao X, Koledova VV, Khalil RA. Prolonged increases in vein wall tension increase matrix metalloproteinases and decrease constriction in rat vena cava: potential implications in varicose veins. J Vasc Surg. 2008;48:447–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Alsaigh T, Pocock ES, Bergan JJ, Schmid-Schonbein GW. Acute venous occlusion enhances matrix metalloprotease activity: implications on endothelial dysfunction. Microvasc Res. 2011;81:108–16.PubMedCrossRefGoogle Scholar
  54. 54.
    Badier-Commander C, Verbeuren T, Lebard C, Michel JB, Jacob MP. Increased TIMP/MMP ratio in varicose veins: a possible explanation for extracellular matrix accumulation. J Pathol. 2000;192: 105–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Sansilvestri-Morel P, Fioretti F, Rupin A, Senni K, Fabiani JN, Godeau G, et al. Comparison of extracellular matrix in skin and saphenous veins from patients with varicose veins: does the skin reflect venous matrix changes? Clin Sci. 2007;112:229–39.PubMedCrossRefGoogle Scholar
  56. 56.
    Kowalewski R, Sobolewski K, Wolanska M, Gacko M. Matrix metalloproteinases in the vein wall. Int Angiol. 2004;23:164–9.PubMedGoogle Scholar
  57. 57.
    Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97:916–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Dashwood MR, Loesch A. The saphenous vein as a bypass conduit: the potential role of vascular nerves in graft performance. Curr Vasc Pharmacol. 2009;7:47–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee MS, Park SJ, Kandzari DE, Kirtane AJ, Fearon WF, Brilakis ES, et al. Saphenous vein graft intervention. JACC Cardiovasc Interv. 2011;4:831–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Hagemeyer CE, Peter K. Ex-vivo thrombolytic gene therapy for vein graft patency: the frontier for development of selective, localised therapeutic approaches. Thromb Haemost. 2009;102:3–4.PubMedGoogle Scholar
  61. 61.
    Johnson JL, van Eys GJ, Angelini GD, George SJ. Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol. 2001;21:1146–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Sperry JL, Deming CB, Bian C, Walinsky PL, Kass DA, Kolodgie FD, et al. Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ Res. 2003;92:41–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Torsney E, Mayr U, Zou Y, Thompson WD, Hu Y, Xu Q. Thrombosis and neointima formation in vein grafts are inhibited by locally applied aspirin through endothelial protection. Circ Res. 2004;94:1466–73.PubMedCrossRefGoogle Scholar
  64. 64.
    Poston RS, Gu J, Brown JM, Gammie JS, White C, Nie L, et al. Endothelial injury and acquired aspirin resistance as promoters of regional thrombin formation and early vein graft failure after coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2006;131:122–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Thomas AC, Campbell JH. Timecourse of fibrin deposition and removal after arterial injury. Thromb Res. 2003;109:65–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Kockx MM, De Meyer GRY, Bortier H, de Meyere N, Muhring J, Bakker A, et al. Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation. 1996;94:1255–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Fitzgerald M, Hayward IP, Thomas AC, Campbell GR, Campbell JH. Matrix metalloproteinase can facilitate the heparanase-induced promotion of phenotype change in vascular smooth muscle cells. Atherosclerosis. 1999;145:97–106.PubMedCrossRefGoogle Scholar
  68. 68.
    Sharony R, Pintucci G, Saunders PC, Grossi EA, Baumann FG, Galloway AC, et al. Matrix metalloproteinase expression in vein grafts: role of inflammatory mediators and extracellular signal-regulated kinases-1 and -2. Am J Physiol Heart Circ Physiol. 2006;290:H1651–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Shi C, Patel A, Zhang D, Wang H, Carmeliet P, Reed GL, et al. Plasminogen is not required for neointima formation in a mouse model of vein graft stenosis. Circ Res. 1999;84:883–90.PubMedCrossRefGoogle Scholar
  70. 70.
    Thomas AC, Wyatt MJ, Newby AC. Reduction of early vein graft thrombosis by tissue plasminogen activator gene transfer. Thromb Haemost. 2009;102:145–52.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Cardiovascular SurgeryBristol Heart InstituteBristolUK

Personalised recommendations