Skip to main content

Development of the Male Reproductive System

  • Chapter
  • First Online:
Clinical Urologic Endocrinology

Abstract

Male and female reproductive systems develop in close relation to the urinary tract. Until approximately 7 weeks gestation, the human embryo remains sexually bipotential. Subsequently, in males, testis-inducing factors cause differentiation from the default female phenotype. As the testis forms, testosterone and other androgens drive the formation of the external genitalia and internal male reproductive structures, while other testicular factors cause regression of female reproductive organ precursors. Androgens also play a role in the descent of the testicles from their origin in the upper abdomen. Germ cells enter an arrested phase of maturation in the first trimester. A surge of testosterone in the neonatal period plays a role in testicular development, but it is not until the largest androgen surge of puberty that gonadarche occurs with the onset of spermatogenesis. In this chapter, we review the formation and maturation of the reproductive system, with an emphasis on hormonal factors and aspects relevant to clinical care of male reproductive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGD:

Anogenital distance

AMH:

Anti-Müllerian hormone

CDGP:

Constitutional delay of growth and puberty

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

CGRP:

Calcitonin gene-related peptide

CSL:

Cranial suspensory ligament or cranial mesonephric ligament

DHT:

Dihydrotestosterone

FSH:

Follicle-stimulating hormone

GnRH:

Gonadotropin-releasing hormone

INSL3:

Insulin-like factor 3

LH:

Luteinizing hormone

MIS:

Müllerian-inhibiting substance

PGC:

Primordial germ cell

SRY:

Sex-determining region of the Y chromosome

TDS:

Testicular dysgenesis syndrome

References

  1. Schmahl J, Eicher EM, Washburn LL, Capel B. SRY induces cell proliferation in the mouse gonad. Development. 2000;127:65–73.

    PubMed  CAS  Google Scholar 

  2. McKenney JK, Heerema-McKenney A, Rouse RV. Extragonadal germ cell tumors: a review with emphasis on pathologic features, clinical prognostic variables, and differential diagnostic considerations. Adv Anat Pathol. 2007;14:69–92.

    Article  PubMed  Google Scholar 

  3. Terada M, Goh DW, Farmer PJ, Hutson JM. Ontogeny of gubernacular contraction and effect of calcitonin gene-related peptide in the mouse. J Pediatr Surg. 1994;29:609–11.

    Article  PubMed  CAS  Google Scholar 

  4. Foresta C, Zuccarello D, Garolla A, Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev. 2008;29:560–80.

    Article  PubMed  CAS  Google Scholar 

  5. Raman JD, Nobert CF, Goldstein M. Increased incidence of testicular cancer in men presenting with infertility and abnormal semen analysis. J Urol. 2005;174:1819–22.

    Article  PubMed  Google Scholar 

  6. Jacobsen R, Bostofte E, Engholm G, Hansen J, Olsen JH, Skakkebaek NE, et al. Risk of testicular cancer in men with abnormal semen characteristics: cohort study. BMJ. 2000;321:789–92.

    Article  PubMed  CAS  Google Scholar 

  7. Skakkebaek NE, Rajpert-DeMeyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kraft KH, Bhargava N, Schast AW, Canning DA, Kolon TF. Histological examination of solitary contralateral descended testis in congenital absence of testis. J Urol. 2011;187:676–80.

    Article  PubMed  Google Scholar 

  9. Rey RA, Grinspon RP. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract Res Clin Endocrinol Metab. 2011;25:221–38.

    Article  PubMed  CAS  Google Scholar 

  10. Coppens L, Bonnet P, Andrianne R, de Leval J. Adult mullerian duct or utricle cyst: clinical significance and therapeutic management of 65 cases. J Urol. 2002;167:1740–4.

    Article  PubMed  Google Scholar 

  11. Dork T, Dworniczak B, Aulehla-Scholz C, Wieczorek D, Bohm I, Mayerova A, et al. Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum Genet. 1997;100:365–77.

    Article  PubMed  CAS  Google Scholar 

  12. Brioude F, Bouligand J, Trabado S, Francou B, Salenave S, Kamenicky P, et al. Non-syndromic congenital hypogonadotropic hypogonadism: clinical presentation and genotype-phenotype relationships. Eur J Endocrinol. 2010;162:835–51.

    Article  PubMed  CAS  Google Scholar 

  13. Eisenberg ML, Hsieh MH, Walters RC, Krasnow R, Lipshultz LI. The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS One. 2011;6:e18973.

    Article  PubMed  CAS  Google Scholar 

  14. Berensztein EB, Sciara MI, Rivarola MA, Belgorosky A. Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: high rate of testicular growth in newborns mediated by decreased apoptosis. J Clin Endocrinol Metab. 2002;87:5113–8.

    Article  PubMed  CAS  Google Scholar 

  15. Schoenwolf GC, Larsen WJ. Larsen’s human embryology. 4th ed. Philadelphia: Churchill Livingstone/Elsevier; 2009. Chapter 15: Development of the urogenital system. Images modified and/or used with permission from Elsevier.

    Google Scholar 

  16. Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, et al. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development. 2006;133:1495–505.

    Article  PubMed  CAS  Google Scholar 

  17. Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366:443–53.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto AM, Bremner WJ. Chapter 19: Testicular disorders. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams textbook of endocrinology. 12th ed. Philadelphia: Saunders/Elsevier; 2012.

    Google Scholar 

  19. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86:724–31.

    Article  PubMed  CAS  Google Scholar 

  20. Barbaro M, Wedell A, Nordenstrom A. Disorders of sex development. Semin Fetal Neonatal Med. 2011;16:119–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L. Burnett M.D., M.B.A., FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Rao, P.K., Burnett, A.L. (2013). Development of the Male Reproductive System. In: Kavoussi, P., Costabile, R., Salonia, A. (eds) Clinical Urologic Endocrinology. Springer, London. https://doi.org/10.1007/978-1-4471-4405-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4405-2_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4404-5

  • Online ISBN: 978-1-4471-4405-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics