Combining Stereo Imaging, Inertial and Altitude Sensing Systems for the Quad-Rotor

  • Luis Rodolfo García Carrillo
  • Alejandro Enrique Dzul López
  • Rogelio Lozano
  • Claude Pégard
Part of the Advances in Industrial Control book series (AIC)


This chapter is devoted to the design and implementation of a stereo-vision, inertial and altitude sensing system for a quad-rotor. The objective is to enable the vehicle to autonomously perform take-off, relative positioning, navigation and landing when evolving in unstructured, indoors, and GPS-denied environments. A real-time comparison study between a Luenberger observer, a Kalman filter and a complementary filter is also addressed, with the purpose of validating the most effective approach for combining the different sensing technologies.


Kalman Filter State Observer Translational Velocity Visual Odometry Stereo Vision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Achtelik, M.: Vision-based pose estimation for autonomous micro aerial vehicles in GPS-denied areas. Master’s Thesis. Technische Universitat Munchen, April 2009 Google Scholar
  2. 2.
    Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: Unmanned Systems Technology XI, April 2009. Proc. of SPIE, vol. 7332 (2009) Google Scholar
  3. 11.
    Benzemrane, K., Damm, G., Santosuosso, G.L.: Adaptive observer and Kalman filtering. In: International Federation of Automatic Control, Seoul, Korea, July 2008 Google Scholar
  4. 12.
    Benzemrane, K., Santosuosso, G.L., Damm, G.: Unmanned aerial vehicle speed estimation via nonlinear adaptive observers. In: American Control Conference, New York, USA, July 2007 Google Scholar
  5. 13.
    Blosch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, May 2010, pp. 21–28 (2010) CrossRefGoogle Scholar
  6. 17.
    Bouguet, J.Y.: Camera calibration toolbox for Matlab. (2011)
  7. 18.
    Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker: Description of the algorithm. Microprocessor Research Labs, Intel Corporation (2002) Google Scholar
  8. 19.
    Boutayeb, M., Richard, E., Rafaralahy, H., Ali, H.S., Zaloylo, G.: A simple time-varying observer for speed estimation of UAV. In: International Federation of Automatic Control, Seoul, Korea, July 2008 Google Scholar
  9. 20.
    Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly Media, Sebastopol (2008) Google Scholar
  10. 21.
    Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering, 3rd edn. Wiley, New York (1996) Google Scholar
  11. 22.
    Buskey, G.D., Roberts, J., Corke, P.I., Wyeth, G.F.: Helicopter automation using a low-cost sensing system. Comput. Control Eng. J. 15(2), 8–9 (2004) Google Scholar
  12. 24.
    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and slam for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54(1–3), 137–161 (2009) CrossRefGoogle Scholar
  13. 27.
    Castillo, P., Dzul, A., Lozano, R.: Real time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–515 (2004) MathSciNetCrossRefGoogle Scholar
  14. 28.
    Chen, C.-T.: Linear Systems Theory and Design. Oxford University Press, London (1998) Google Scholar
  15. 29.
    Cheng, Y., Maimone, M.W., Matthies, L.: Visual odometry on the Mars exploration rovers. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006) CrossRefGoogle Scholar
  16. 30.
    Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Robot. Syst. 21(2), 43–51 (2004) CrossRefGoogle Scholar
  17. 31.
    Corke, P.I., Strelow, D., Singh, S.: Omnidirectional visual odometry for a planetary rover. In: IEEE International Conference on Intelligent Robots and Systems. Sendai, Japan, September 2004 Google Scholar
  18. 35.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981) MathSciNetCrossRefGoogle Scholar
  19. 37.
    García Carrillo, L.R., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad rotor using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011) CrossRefGoogle Scholar
  20. 41.
    He, R., Prentice, S., Roy, N.: Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 2008 Google Scholar
  21. 43.
    Hespanha, J., Yakimenko, O., Kaminer, I., Pascoal, A.: Linear parametrically varying systems with brief instabilities: An application to integrated vision/imu navigation. IEEE Trans. Aerosp. Electron. Syst. 40(3), 889–902 (2004) CrossRefGoogle Scholar
  22. 46.
    Hrabar, S., Sukhatme, G.: Vision-based navigation through urban canyons. J. Field Robot. 26(5), 431–452 (2009) CrossRefGoogle Scholar
  23. 51.
    Kelly, J., Saripalli, S., Sukhatme, G.S.: Combined visual and inertial navigation for an unmanned aerial vehicle. In: International Conference on Field and Service Robotics, Chamonix, France, July 2007 Google Scholar
  24. 55.
    Levin, A., Szeliski, R.: Visual odometry and map correlation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, June 2004 Google Scholar
  25. 57.
    Lozano, R., Salazar Cruz, S., Sanchez, A., Fantoni, I.: Discrete-time stabilization of integrators in cascade with bounded inputs and delay. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 2006 Google Scholar
  26. 60.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer, Berlin (2003) Google Scholar
  27. 62.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, July 2004, pp. 652–659 (2004) Google Scholar
  28. 64.
    Open Source Computer Vision. (2011)
  29. 67.
    Romero, H., Salazar, S., Lozano, R.: Stabilization of an eight-rotor UAV using optical flow. IEEE Trans. Robot. 25(4), 809–817 (2009) CrossRefGoogle Scholar
  30. 74.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 593–600 (1994) Google Scholar
  31. 76.
    Sünderhauf, N., Protzel, P.: Stereo odometry—a review of approaches. Technical Report, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, March 2007 Google Scholar
  32. 79.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991) CrossRefGoogle Scholar
  33. 84.
    Zufferey, J.C., Floreano, D.: Toward 30-gram autonomous indoor aircraft: Vision-based obstacle avoidance and altitude control. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Luis Rodolfo García Carrillo
    • 1
  • Alejandro Enrique Dzul López
    • 2
  • Rogelio Lozano
    • 3
  • Claude Pégard
    • 4
  1. 1.HEUDIASYC UMR 6599, Centre de Recherches de RoyalieuUniversité de Technologie de CompiègneCompiègne cedexFrance
  2. 2.División de Estudios de PosgradoInstituto Tecnológico de la LagunaTorreónMexico
  3. 3.UMR-CNRS 6599, Centre de Recherche de RoyalieuUniversité de Technologie de CompiègneCompiègneFrance
  4. 4.Laboratoire MIS EA 4290Université de Picardie Jules VerneAmiensFrance

Personalised recommendations