Urolithiasis pp 683-707 | Cite as

Application of Physical Methods to Kidney Stones and Randall’s Plaque Characterization

Abstract

Chemical analysis of stones does not identify crystal types, as do physical methods. This chapter describes the principles and application of X-ray energy dispersive spectrometry (EDS), proton-induced X-ray emission (PIXE), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), scanning electron microscopy (SEM), powder neutron diffraction (PND), X-ray absorption spectroscopy (XAS), and FTIR microspectroscopy (FTIRM). Today, fine details regarding the relationship between structural characteristic of kidney stones and the pathology that exists at the macroscopic scale can be obtained at the mesoscopic scale.

Some of the key issues addressed are in addition to chemical composition, the spatial distribution of the different chemical phases inside Randall’s plaque, and the nature of the interaction between plaque, stone, and renal epithelium. Details regarding relevant concepts of these different methods used principally in physics and chemistry are not given, as they can be obtained from available excellent reviews and books. Instead, the detailed nature of information that is given by these techniques is discussed, and the link between structural or chemical information and the etiopathogenesis of kidney stones is explored.

Keywords

Randall’s plaque Concretion Kidney stone Calcification Calcium oxalate Calcium phosphate Uric acid Ammonium hydrogen urate Magnesium ammonium phosphate Cystine X-ray energy dispersive spectrometry Proton-induced X-ray emission Fourier transform infrared spectroscopy Nanocrystals Crystallites X-ray fluorescence Scanning electron microscopy Powder neutron diffraction Amorphous carbonated calcium ­phosphate X-ray absorption spectroscopy FTIR microspectroscopy 

Notes

Acknowledgments

We wish to thank Dr. I. Brocheriou (Necker Hospital), Dr. X. Carpentier (Nice Hospital), Dr. Ch. Chappard (Lariboisière Hospital), Prof. P. Conort (La Pitié-Salpétrière Hospital), Dr. P. Dorfmüller (La Pitié-Salpétrière Hospital), Prof. D. Hannouche (Lariboisière Hospital), Dr. J. P. Haymann (Tenon Hospital), Prof. P. Jungers (Necker Hospital), Prof. B. Knebelman (Necker Hospital), Dr. E. A. Korn (Lariboisiere Hospital), Dr. E. Letavernier (Tenon Hospital), Prof. F. Lioté (Lariboisière Hospital), Prof. M. Mathonnet (Limoges Hospital), Prof. P. Meria (St. Louis Hospital), Dr. Ch. Nguyen (Lariboisière Hospital), Dr. I. Tostivint (La Pitié-Salpétrière Hospital), Prof. O. Traxer (Tenon Hospital), and Prof. J. C. Williams (Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN) for providing samples and useful discussions.

Also, regarding the physicochemistry, this research could not have been performed without the scientific advices of Dr. P. A. Albouy (LPS), Dr. G. André (LLB), Dr. A. Bianchi (INSERM-U7561), Dr. P. Chevallier (LURE), Dr. A. Cousson (LLB), Dr. P. Dumas (Soleil Synchrotron), Dr. B. Fayard (LPS), Dr. F. Fayon (CEHMTI), Dr. E. Foy (Laboratoire Pierre Süe), Dr. J. Guicheux (Laboratoire d’Ingénierie Ostéo-Articulaire et dentaire), Dr. J. L. Hazemann (ESRF), Dr. A. Lebail (Laboratoire des fluorures), Dr. Lenaour (INSERM U1004), Dr. O. Mathon (ESRF), Dr. G. Matzen (CEHMTI), Dr. P. Reboul (UMR 7561), Dr. M. Refringiers (Soleil Synchrotron), Dr. S. Reguer (Soleil Synchrotron), Dr. S. Rouzière (LPS), Dr. J. P. Samama (Soleil Synchrotron), Dr. Ch. Sandt (Soleil Synchrotron), Dr. D. Thiaudière (Soleil Synchrotron), Dr. E. Véron (CEHMTI), and Dr. R. Weil (LPS).

This work was supported by the Physics and Chemistry Institutes of CNRS and by contract ANR-09-BLAN-0120-02. The authors are grateful to the SOLEIL SR Facility and the Leon Brillouin laboratory for beam time allocation.

References

  1. 1.
    Mann S. Biomineralisation. Principles and concepts in bioinorganic materials chemistry. Oxford, UK: Oxford University Press; 2001.Google Scholar
  2. 2.
    Bonucci E. Calcification in biological systems. Boca Raton: CRC Press; 1992.Google Scholar
  3. 3.
    Bonucci E. Biological calcification, normal and pathological ­processes in the early stages. Berlin: Springer Verlag; 2007.Google Scholar
  4. 4.
    Giachelli CM. Ectopic calcification, gathering hard facts about soft tissue mineralization. Am J Pathol. 1999;154:671–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Jungers P, Daudon M, Leduc A. Lithiase urinaire. Paris: Flammarion Medecine-Sciences; 1989.Google Scholar
  6. 6.
    Conort P, Jungers P, Daudon M. Lithiase rénale, diagnostic et traitement. Flammarion: Medecine-Sciences; 1999.Google Scholar
  7. 7.
    Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115:2598–608.PubMedCrossRefGoogle Scholar
  8. 8.
    Jungers P, Daudon M. Epidemiology of the kidney stones. Presse Med. 1990;19:1655–7.PubMedGoogle Scholar
  9. 9.
    Jungers P, Joly D, Barbey F, Choukroun G, Daudon M. ESRD caused by nephrolithiasis: prevalence, mechanisms, and prevention. Am J Kidney Dis. 2004;44:799–805.PubMedGoogle Scholar
  10. 10.
    Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367:333–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Knoll T. Stone disease. Eur Urol Suppl. 2007;6:717–22.CrossRefGoogle Scholar
  12. 12.
    Powell CR, Stoller ML, Schwartz BF, et al. Impact of body weight on urinary electrolytes in urinary stone formers. Urology. 2000;55:825–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Sakhaee K, Adams-Huet B, Moe OW, et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62:971–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Daudon M. Epidemiology of nephrolithiasis in France. Ann Urol. 2005;39:209–31.CrossRefGoogle Scholar
  15. 15.
    Daudon M, Donsimoni R, Hennequin C, et al. Sex- and age-related composition of 10617 calculi analyzed by infrared spectroscopy. Urol Res. 1995;23:319–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Daudon M, Lacour B, Jungers P. High prevalence of uric acid calculi in diabetic stone formers. Nephrol Dial Transplant. 2005;20:468–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Joly D, Rieu P, Mejean A, Gagnadoux MF, Daudon M, Jungers P. Treatment of cystinuria. Pediatr Nephrol. 1999;13:945–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Daudon P, Bader CA, Jungers P. Urinary calculi – review of classification methods and correlations with etiology. Scanning Microsc. 1993;7:1081–106.PubMedGoogle Scholar
  19. 19.
    Daudon M. L’analyse morphoconstitutionnelle des calculs dans le diagnostic étiologique d’une lithiase urinaire de l’enfant. Arch Pediatr. 2000;7:855–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Daudon M, Jungers P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol. 2004;98:31–6.CrossRefGoogle Scholar
  21. 21.
    Randall A. An hypothesis for the origin of renal calculus. N Engl J Med. 1936;214:234–7.CrossRefGoogle Scholar
  22. 22.
    Randall A. The origin and growth of renal calculi. Ann Surg. 1937;105:1009–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Randall A. Papillary pathology as a precursor of primary renal ­calculus. J Urol. 1940;44:580–9.Google Scholar
  24. 24.
    Ohman S, Larsson L. Evidence for Randall’s plaques to be the ­origin of primary renal stones. Med Hypotheses. 1992;39:360–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Evan AP, Lingeman JE, Coe FL, et al. Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol. 2008;28:111–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Low RK, Stoller ML. Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol. 1997;158:2062–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim SC, Coe FL, Tinmouth WW, et al. Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol. 2005;173:117–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Guinier A. Théorie et technique de la radiocristallographie. Paris: Dunod; 1964.Google Scholar
  29. 29.
    Materlik G, Sparks CJ, Fisher K, editors. Resonant anomalous X-ray scattering. North-Holland: Amsterdam; 1994.Google Scholar
  30. 30.
    Van Meerssche M, Feneau-Dupont J. Introduction à la cristallographie et à la chimie structurale. Louvain-la-Neuve: Peeters; 1984.Google Scholar
  31. 31.
    Miller LM, Dumas P. From structure to cellular mechanism with infrared microspectroscopy. Curr Opin Struct Biol. 2010;20:649–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Miller LM, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta. 2006;1758:846–57.PubMedCrossRefGoogle Scholar
  33. 33.
    Estépa L, Daudon M. Contribution of Fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy. 1997;3:347–69.CrossRefGoogle Scholar
  34. 34.
    Maurice-Estepa L, Levillain P, Lacour B, Daudon M. Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta. 2000;298:1–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Warren BE. X-ray diffraction. New York: Dover; 1990.Google Scholar
  36. 36.
    Rietveld HM. A profile refinement method for nuclear and magnetic structure. J Appl Cryst. 1969;2:65–71.CrossRefGoogle Scholar
  37. 37.
    Le Bail A, Loüer D. Smoothing and validity of crystallite size distributions from X-ray line profile analysis. J Appl Cryst. 1978;11:50–5.CrossRefGoogle Scholar
  38. 38.
    Le Bail A, Bazin D, Daudon M, Brochot A, Robbez-Masson V, Maisonneuve V. Racemic calcium tartrate tetrahydrate form (II) in rat urinary stones. Acta Cryst B. 2009;65:350–4.CrossRefGoogle Scholar
  39. 39.
    Klug H, Alexander L. X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed. New York: Wiley; 1974.Google Scholar
  40. 40.
    Burton AW, Ong K, Rea T, Chan IY. On the estimation of average crystallite size of zeolites from the scherrer equation: a critical evaluation of its application to zeolites with one dimensional pore systems. Micropor Mesopor Mat. 2009;117:75–90.CrossRefGoogle Scholar
  41. 41.
    Gnutzmann V, Vogel W. Structural sensitivity of the standard platinum/silica catalyst EuroPt-1 to hydrogen and oxygen exposure by in situ X-ray diffraction. J Phys Chem. 1990;94:4991.CrossRefGoogle Scholar
  42. 42.
    Chougnet A, Heitz C, Sondergard E, Berquier JM, Albouy PA, Klotz M. Substrates do influence the ordering of mesoporous thin films. J Mater Chem. 2005;15:3340–50.CrossRefGoogle Scholar
  43. 43.
    Vallet-Regi M, Gonzalez-Calbet JM. Calcium phosphates as substitution of bone tissues. Progr Solid St Chem. 2004;32:1–31.CrossRefGoogle Scholar
  44. 44.
    Drouet C, Bosc F, Banu M, Largeot C, Combes C, Dechambre G, et al. Nanocrystalline apatites: from powders to biomaterials. Powder Technol. 2009;190:118–22.CrossRefGoogle Scholar
  45. 45.
    Chevallier P, Wang JX, Brissaud I. S.R. As a tool for X-ray fluorescence analysis of trace elements. Chem Geol. 1988;70:173–90.CrossRefGoogle Scholar
  46. 46.
    McLean RJC, Nickel JC, Noakes VC. An in vitro ultrastructural study of infectious kidney stone genesis. Infect Immun. 1985;2:805–11.Google Scholar
  47. 47.
    Nickel JC, Reid G, Bruce AW. Ultrastructural microbiology of infected urinary stone. Urology. 1986;28:512–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Dorian HH, Rez P, Drach GW. Evidence for aggregation in oxalate stone formation: atomic force and low voltage scanning electron microscopy. J Urol. 1996;156:1833–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Umer S, Sultan S, Zafar M. Composition of renal and bladder calculi in pediatric stone formers. J Pediatr Urol. 2009;5:S32.CrossRefGoogle Scholar
  50. 50.
  51. 51.
    http://www.lightsources.org/cms/. Accessed 26 Oct 2011.
  52. 52.
    http://www.synchrotron-soleil.fr/. Accessed 26 Oct 2011.
  53. 53.
    Castelli E, Arfelli F, Dreossi D. Clinical mammography at the SYRMEP beam line. NIM A. 2007;572:237–40.CrossRefGoogle Scholar
  54. 54.
  55. 55.
  56. 56.
    http://www.esrf.eu/. Accessed 26 Oct 2011.
  57. 57.
    Current events. J. Synchroton Radiat 2007;14:297–298.Google Scholar
  58. 58.
    Adam JF, Biston MC, Rousseau J. Heavy element enhanced synchrotron stereotactic radiotherapy as a promising brain tumour treatment. Phys Med. 2008;24:92–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Chevallier P, Dhez P, Erko A, et al. X-ray microprobes. NIM B. 1996;113:122–32.CrossRefGoogle Scholar
  60. 60.
    Grunwaldt JD, Hannemann S, Schroer CG. 2D-Mapping of the catalyst structure inside a catalytic microreactor at work: partial oxidation of methane over Rh/Al2O3. J Phys Chem B. 2006;110:8674–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Jamin N, Dumas P, Moncuit J. Highly resolved chemical imaging of living cells by using S.R. Infrared microspectrometry. PNAS. 1998;95:4837–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Benazeth S, Bazin D, Viosat B, et al. Composé du platine(II) à visée tumorale, dérivés de l’ellepticine et de ses analogues. J Chim Phys. 1989;T86–718:1635–8.Google Scholar
  63. 63.
    Bouvet D, Michalowicz A, Crauste-Manciet S, Curis E, Nicolis I, Olivi L, et al. EXAFS characterization of oxaliplatin anticancer drug and its degradation in chloride media. J Synchroton Radit. 2006;13:477–83.CrossRefGoogle Scholar
  64. 64.
    Nicolis I, Deschamps P, Curis E, Bénazeth S. XAS applied to pharmaceuticals: drug administration and bioavailability. J Synchroton Radit. 2001;8:984–6.CrossRefGoogle Scholar
  65. 65.
    Bazin D, Sayers D, Rehr J. Comparison between Xas, awaxs, asaxs & dafs applied to nanometer scale metallic clusters. J Phys Chem. 1997;101:11040–7.CrossRefGoogle Scholar
  66. 66.
    Chassot E, Oudadesse H, Irigaray J, Curis E, Bénazeth S, Nicolis I. Differentiation of biological hydroxyapatite compounds by infrared spectroscopy, x-ray diffraction and exafs. J Appl Phys. 2001;90:6440–6.CrossRefGoogle Scholar
  67. 67.
    Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into HAP. Biomaterials. 2009;30:2864–72.PubMedCrossRefGoogle Scholar
  68. 68.
    Bazin D, Daudon M, Chevallier P, et al. Les techniques de rayonnement synchrotron au service de la caractérisation d’objets biologiques: un exemple d’application, les calculs rénaux. Ann Biol Clin. 2006;64:125–39.Google Scholar
  69. 69.
    Bazin D, Carpentier X, Traxer O, et al. Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. J Synchroton Radit. 2008;15:506–9.CrossRefGoogle Scholar
  70. 70.
    Moonen J, Slot J, Lefferts L, Bazin D, Dexpert H. The influence of polydispersity and inhomogeneity on exafs of bimetallic catalysts. Physica B. 1995;208&209:689–90.CrossRefGoogle Scholar
  71. 71.
    Harries JE, Hukins DW, Holt C, Hasnain SS. Conversion of amorphous calcium phosphate into hydroxyapatite. J Crystal Growth. 1987;84:563–70.CrossRefGoogle Scholar
  72. 72.
    Bazin D, Rehr J. Limits and advantages of xanes for nanometer scale metallic clusters. J Phys Chem B. 2003;107:12398–493.CrossRefGoogle Scholar
  73. 73.
    Tew MW, Miller JT, van Bokhoven JA. Particle size effect of hydride formation and surface hydrogen adsorption of nanosized Pd catalysts: L3 edge vs K edge X-ray absorption spectroscopy. J Phys Chem C. 2009;113:15140–7.CrossRefGoogle Scholar
  74. 74.
    Bazin D, Rehr J. Soft X-ray absorption spectroscopy at the cutting edge for nanomaterials used in heterogeneous catalysis: the state of the art. Catal Lett. 2003;87:85–90.CrossRefGoogle Scholar
  75. 75.
    Dumas P, Sockalingun GD, Sulé-Suso J. Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol. 2006;25:40–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Daudon M, Jungers P, Bazin D. Peculiar morphology of stones in primary hyperoxaluria. N Engl J Med. 2008;359:100–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Daudon M, Jungers P, Bazin D. Stones in primary hyperoxaluria – a clarification. N Engl J Med. 2009;360:100.CrossRefGoogle Scholar
  78. 78.
    Carpentier X, Daudon M, Traxer O, et al. Relationship between the carbonate rate of carbapatite, morphological characteristics of calcium phosphate stones and etiology. Urology. 2009;73:968–75.PubMedCrossRefGoogle Scholar
  79. 79.
    Rokita E, Hermes C, Nolting HF, Rycze K. Substitution of Ca by Sr within selected Ca phosphates. J Crystal Growth. 1993;130:543–52.CrossRefGoogle Scholar
  80. 80.
    Rosenow Jr EC. Renal calculi: study of papillary calcification. J Urol. 1940;44:19–23.Google Scholar
  81. 81.
    Vermooten V. The incidence and significance of the deposition of calcium plaques in the renal papilla as observed in the Caucasian and bantu population in South Africa. J Urol. 1941;46:193–6.Google Scholar
  82. 82.
    Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, et al. Randall’s Plaque of patients with nephrolithiasis begins in basement membranes of thin loops of henle. J Clin Invest. 2003;111:607–16.PubMedGoogle Scholar
  83. 83.
    Evan AP, Coe FL, Lingeman JE, et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken). 2007;290:1315–23.CrossRefGoogle Scholar
  84. 84.
    Matlaga BR, Coe FL, Evan AP, Lingeman JE. The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol. 2007;177:31–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Daudon M, Traxer O, Williams JC, et al. Randall’s plaques. In: Rao N, Khavanagh J, Preminger G, editors. Urinary tract stone disease. New York: Springer; 2011. p. 103–12.Google Scholar
  86. 86.
    Daudon M, Traxer O, Jungers P, Bazin D. Stone morphology suggestive of Randall’s plaque. Vol 900. In: Evan AP, Lingeman JE, Williams JC Jr, eds. Renal stone disease. American Institute of Physics Conference Proceedings, Ed. New York: Melville; 2007. p. 26–34.Google Scholar
  87. 87.
    Levinson AA, Nosal M, Davidman M. Trace elements in kidney stones from three areas in the United States. Invest Urol. 1978;15:270–5.PubMedGoogle Scholar
  88. 88.
    Joost J, Tessadri R. Trace element investigations in kidney stone patients. Eur Urol. 1987;13:264–71.PubMedGoogle Scholar
  89. 89.
    Grases F, Genestar C, Mill A. The influence of some metallic ions and their complexes on the kinetics of crystal growth of calcium oxalate. J Crystal Growth. 1986;94:507–11.CrossRefGoogle Scholar
  90. 90.
    Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M. Heavy ­elements in urinary stones. Urol Res. 2007;35:179–84.PubMedCrossRefGoogle Scholar
  91. 91.
    Bertsch PM, Hunter DB. Applications of synchrotron-based X-ray microprobes. Chem Rev. 2001;101:1809–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Carpentier X, Bazin D, Combes C, et al. High Zn content of Randall’s plaque: A μ-X-ray fluorescence investigation. J Trace Elem Med Biol. 2011;25:160–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Rher JJ, Kas JJ, Prange MP, Sorini AP, Takimoto Y, Vila F. Ab initio theory and calculations of X-ray spectra. C R Phys. 2009;10:548–59.CrossRefGoogle Scholar
  94. 94.
    Eiden-Assmann S, Viertelhaus M. In-situ XANES spectroscopy at the Ca K edge of calcium phosphate compounds. HASYLAB-Jahresbericht 1999, HASYLAB/DESY: Hamburg; 2000.Google Scholar
  95. 95.
    Asokan K, Jan JC, Chiou JW, Pong WF, Tseng PK, Lin IN. X-ray absorption spectroscopy studies of Ba1-xCaxTiO3. J Synchroton Radit. 2001;8:839–41.CrossRefGoogle Scholar
  96. 96.
    Eichert D, Salomé M, Banu M, Susini J, Rey C. Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy. Spectrochim Acta B. 2005;60:850–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Service des Explorations FonctionnellesTenon Hospital, APHPParisFrance
  2. 2.Laboratoire de Physique des Solides UMR 8502Université Paris SudOrsay CedexFrance

Personalised recommendations