Skip to main content

Bioeffects of Shock Wave Lithotripsy

  • Chapter
  • First Online:
Urolithiasis

Abstract

Injudicious use of shock wave lithotripsy can lead to unwanted effects. The acute bioeffects of shock waves such as renal hemorrhage can be reduced by a number of measures, which include pretreatment with shockwaves, slowing the firing rate, and reducing the total number of shock waves delivered and the power of the shock. Improving the coupling between the patient and machine also improves effectiveness and reduces harm. Long-term effects include renal scarring and new-onset hypertension. This chapter explores the mechanisms by which these bioeffects are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol. 1982;127(3):417–20.

    PubMed  CAS  Google Scholar 

  2. Chaussy C, Eisenberger F, Forssmann B. Extracorporeal shockwave lithotripsy (ESWL): a chronology. J Endourol. 2007;21:1249.

    Article  PubMed  CAS  Google Scholar 

  3. Lingeman JE, Newman D, Mertz JH, Mosbaugh PG, Steele RE, Kahnoski RJ, et al. Extracorporeal shock wave lithotripsy: the Methodist Hospital of Indiana experience. J Urol. 1986;135(6):1134–7.

    PubMed  CAS  Google Scholar 

  4. Chaussy CG, Fuchs J. Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. J Urol. 1989;141:782–9.

    PubMed  CAS  Google Scholar 

  5. Lingeman JE, Matlaga BR, Evan AP. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-Walsh urology. Philadelphia: W. B. Saunders; 2007. p. 1431–507.

    Google Scholar 

  6. Pareek G, Hedican SP, Lee Jr FT, et al. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology. 2005;66:941.

    Article  PubMed  Google Scholar 

  7. Evan AP, Willis LR. Extracorporeal shock wave lithotripsy: complications. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, et al., editors. Smith’s textbook on endourology. Hamilton: BC Decker, Inc; 2007. p. 353–65.

    Google Scholar 

  8. Evan AP, McAteer JA. Q-effects of shock wave lithotripsy. In: Coe FL, Favus MJ, Pak CYC, Parks JH, Preminger GM, editors. Kidney stones: medical and surgical management. Philadelphia: Lippincott-Raven; 2006. p. 549–70.

    Google Scholar 

  9. McAteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol. 2008;28:200–13.

    Article  PubMed  Google Scholar 

  10. McAteer JA, Evan AP, Willis LR, et al. Shock wave injury to the kidney in SWL: review and perspective. In: Evan AP, Lingeman JE, Williams JC, editors. Renal stone disease: proceedings of the 1st international urolithiasis research symposium. American Institute of Physics conference proceedings, Melville, 2007, vol. 900, p. 287–301.

    Google Scholar 

  11. Lingeman JE, Matlaga B, Evan AP. Surgical management of ­urinary lithiasis. In: Walsh PC, Retik AB, Vaughan ED, Wein J, editors. Campbell-Walsh urology. Philadelphia: W.B. Saunders; 2006. p. 1431–507. Chapter 44.

    Google Scholar 

  12. McAteer JA, Evan AP, Williams Jr JC, Lingeman JE. Treatment protocols to reduce renal injury during shock wave lithotripsy. Curr Opin Urol. 2009;19(2):192–5.

    Article  PubMed  Google Scholar 

  13. Connors BA, Evan AP, Blomgren PM, et al. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J Endourol. 2006;20:607–11.

    Article  PubMed  Google Scholar 

  14. Willis LR, Evan AP, Connors BA, et al. Shock-wave lithotripsy: dose-related effects on renal structure, hemodynamics and tubular function. J Endourol. 2005;19:90–101.

    Article  PubMed  CAS  Google Scholar 

  15. Connors BA, Evan AP, Willis LR, et al. The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J Am Soc Nephrol. 2000;11:310–8.

    PubMed  CAS  Google Scholar 

  16. Lingeman JE, Delius M, Evan A, et al. Bioeffects and physical mechanisms of SW effects in SWL. In: Segura JW, Conort P, Khory S, et al., editors. Stone disease: first international consultation on stone disease. Paris: Health Publications; 2003. p. 251–86.

    Google Scholar 

  17. Zhong P, Cioanta J, Zhu S, et al. Effects of tissue constraint on shock wave-induced bubble expansion in vivo. J Acoust Soc Am. 1998;104:3126.

    Article  PubMed  CAS  Google Scholar 

  18. Zhong P, Zhou Y, Zhu S. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med Biol. 2001;27:119.

    Article  PubMed  CAS  Google Scholar 

  19. Matlaga BR, McAteer JA, Connors BA, et al. Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol. 2008;22:121.

    Article  PubMed  Google Scholar 

  20. Evan AP, Willis LR, McAteer JA, et al. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J Urol. 2002;168:1556.

    Article  PubMed  Google Scholar 

  21. Zhong P, Zhou Y. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. J Acoust Soc Am. 2001;110:3283.

    Article  PubMed  CAS  Google Scholar 

  22. Pishchalnikov YA, McAteer JA, Williams Jr JC, Pishchalnikova IV, Vonderhaar RJ. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J Endourol. 2006;20(8):537–41.

    Article  PubMed  Google Scholar 

  23. Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Pishchalnikova IV, Williams JC, McAteer JA. Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses. Acoust Res Lett Online. 2005;6(4):280–6.

    Article  PubMed  Google Scholar 

  24. Pishchalnikov YA, Kaehr MM, McAteer JA. Influence of pulse repetition rate on cavitation on the surface of an object targeted by lithotripter shock wave. In: Proceedings of IMECE, Seattle, November 11–15, 2007; 41387.

    Google Scholar 

  25. Williams Jr JC, Woodward JF, Stonehill MA, et al. Cell damage by lithotripter shock waves at high pressure to preclude cavitation. Ultrasound Med Biol. 1999;25:1445.

    Article  PubMed  Google Scholar 

  26. Evan AP, Willis LR, Lingeman JE, McAteer JA. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron. 1998;78:1–8.

    Article  PubMed  CAS  Google Scholar 

  27. Lechevallier E, Siles S, Ortega MC, et al. Comparison by SPECT of renal scars after extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. J Endourol. 1993;7:465.

    Article  PubMed  CAS  Google Scholar 

  28. Newman R, Hackett R, Senior D, et al. Pathological effects of ESWL on canine renal tissue. Urology. 1987;29:194.

    Article  PubMed  CAS  Google Scholar 

  29. Morris JA, Husmann DA, Wilson WT, Preminger GM. Temporal effects of shock wave lithotripsy. J Urol. 1991;145:881–3.

    PubMed  CAS  Google Scholar 

  30. Lingeman JE, Kulb TB, Newman DM, et al. Hypertension following ESWL. J Urol. 1987;137(Suppl):142.

    Google Scholar 

  31. Lingeman JE, Woods JR, Toth PD. Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA. 1990;263:1789–94.

    Article  PubMed  CAS  Google Scholar 

  32. Krambeck AE, Gettman MT, Rohlinger AL, et al. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of follow-up. J Urol. 2006;175:1742.

    Article  PubMed  Google Scholar 

  33. Sato Y, Tanda H, Kato S, et al. Shock wave lithotripsy for renal stones is not associated with hypertension and diabetes mellitus. Urology. 2008;71:586.

    Article  PubMed  Google Scholar 

  34. Makhlouf AA, Thorner D, Ugarte R, et al. Shock wave lithotripsy not associated with development of diabetes mellitus at 6 years of follow-up. Urology. 2009;73:4.

    Article  PubMed  Google Scholar 

  35. Raman JD, Bagrodia A, Bensalah K, Pearle MS, Lotan Y. Residual fragments after percutaneous nephrolithotomy: cost comparison of immediate second look flexible nephroscopy versus expectant management. J Urol. 2010;183(1):188–93.

    Article  PubMed  Google Scholar 

  36. Carr LK, D’A Honey J, Jewett MA, et al. New stone formation: a comparison of extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. J Urol. 1996;155:1565–7.

    Article  PubMed  CAS  Google Scholar 

  37. Parks JH, Worcester EM, Coe FL, et al. Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int. 2004;66:777–85.

    Article  PubMed  CAS  Google Scholar 

  38. Mandel N, Mandel I, Fryjoff K, et al. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J Urol. 2003;169:2026–9.

    Article  PubMed  Google Scholar 

  39. Willis LR, Evan AP, Connors BA, et al. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. J Am Soc Nephrol. 2006;17:663–73.

    Article  PubMed  Google Scholar 

  40. Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int. 2009;103(1):104–7.

    Article  PubMed  Google Scholar 

  41. Handa RK, Bailey MR, Paun M, Gao S, Connors BA, Willis LR, Evan AP. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int. 2009;103(9):1270–4.

    Article  PubMed  Google Scholar 

  42. Evan AP, McAteer JA, Connors BA, et al. Renal injury in SWL is significantly reduced by slowing the rate of shock wave delivery. BJU Int. 2007;100:624–7.

    Article  PubMed  Google Scholar 

  43. Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S, et al. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int. 2009;104:1004–8.

    Article  PubMed  Google Scholar 

  44. Pace KT, Ghiculete D, Harju M, Honey RJD’A. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol. 2005;174:595–9.

    Article  PubMed  Google Scholar 

  45. Madbouly K, El-Tiraifi AM, Seida M, et al. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol. 2005;173:127–30.

    Article  PubMed  Google Scholar 

  46. Yilmaz E, Batislam E, Basar M, et al. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology. 2005;66:1160–4.

    Article  PubMed  Google Scholar 

  47. Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol. 2008;179:194–7.

    Article  PubMed  Google Scholar 

  48. Krambeck AE, Lingeman JE. Shockwave lithotripsy: indications and technique. In: Pearle MS, Nakada SY, editors. Urolithiasis, medical and surgical management. London: Informa Health Care UK; 2009. p. 144.

    Google Scholar 

  49. Pishchalnikov YA, Neucks JS, VonDerHaar RJ, et al. Air pockets trapped during routine coupling in dry-head lithotripsy can significantly reduce the delivery of shock wave energy. J Urol. 2006;176:2706–10.

    Article  PubMed  Google Scholar 

  50. Neucks JS, Pishchalnikov YA, Zancanaro AJ, et al. Improved acoustic coupling for shock wave lithotripsy. Urol Res. 2008;36:61–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Gnessin M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Gnessin, E., Lingeman, J.E. (2012). Bioeffects of Shock Wave Lithotripsy. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_40

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics