Skip to main content

The Stone Surgeon/Lithotomists’ Armamentarium: Today and Tomorrow

  • Chapter
  • First Online:
Urolithiasis

Abstract

Advancements over the past three decades in endourological instrumentation have transformed the stone surgeon’s armamentarium. This chapter reviews the most significant recent advancements and commonly used tools for conducting ureteroscopy and percutaneous nephrolithotomy. Based on in vitro and clinical studies, we provide a comparative assessment of numerous devices, including properties and critical design characteristics that support improved functionality and outcomes. Additionally, we focus on changing trends and clinical challenges associated with medical devices used for treating stone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabnis RB, Mishra S, Sharma R, Desai MR. Preoperative planning and designing of a fluorocompatible endourology operating room. J Endourol. 2009;23(10):1579–85.

    Article  PubMed  Google Scholar 

  2. Meyer RS, White KK, Smith JM, Groppo ER, Mubarak SJ, Hargens AR. Intramuscular and blood pressures in legs positioned in the hemilithotomy position: clarification of risk factors for well-leg acute compartment syndrome. J Bone Joint Surg Am. 2002;84-A:1829–35.

    PubMed  Google Scholar 

  3. Forrest JB, Clemens JQ, Finamore P, Leveillee R, Lippert M, Pisters L, et al. AUA best practice statement for the prevention of deep vein thrombosis in patients undergoing urologic surgery. J Urol. 2009;181(3):1170–7.http://www.auanet.org/content/media/dvt.pdf.

    Article  PubMed  Google Scholar 

  4. Clayman M, Uribe CA, Eichel L, Gordon Z, McDougall EM, Clayman RV. Comparison of guidewires in urology. Which, when, and why. J Urol. 2004;171(6):2146–50.

    Article  PubMed  Google Scholar 

  5. Pedro RN, Hendlin K, Weiland D, Ramani A, Kohler TS, Anderson K, et al. In vitro evaluation of ureteral perforation forces. Urology. 2007;70(3):592–4.

    Article  PubMed  Google Scholar 

  6. Liguori G, Antoniolli F, Trombetta C, Biasotto M, Amodeo A, Pomara G, et al. Comparative experimental evaluation of guidewire use in urology. Urology. 2008;72(2):286–9.

    Article  PubMed  Google Scholar 

  7. Schroder J. The mechanical properties of guidewires. Part 1: stiffness and torsional strength. Cardiovasc Intervent Radiol. 1993;16(1):43–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ekman P, Husain I, Sharma ND, Al-Fagih SR. Transurethral ureteroscopy: safety guidewire as an aid to a more aggressive approach. BJU. 1987;60(1):23–7.

    Article  PubMed  CAS  Google Scholar 

  9. Sutou Y, Yamacuchi K, Suzuki M, Furakawa A, Omori T, Takagi T, et al. High maneuverability guidewire with functionally graded properties using new superelastic alloys. Minim Invasive Ther Allied Technol. 2006;15(4):204–8.

    Article  PubMed  CAS  Google Scholar 

  10. Eandi J, Hu B, Low RK. Evaluation of the impact and need for use of a safety guidewire during ureteroscopy. J Endourol. 2008;22(8):1653–8.

    Article  PubMed  Google Scholar 

  11. Dickstein RJ, Kreshover JE, Babayan RK, Wang DS. Is a safety wire necessary during routine flexible ureteroscopy. J Endourol. 2010;24(10):1589–92.

    Article  PubMed  Google Scholar 

  12. Abrahams HM, Stoller ML. The argument against the routine use of ureteral access sheaths. Urol Clin North Am. 2004;31(1):83–7.

    Article  PubMed  Google Scholar 

  13. Kourambas J, Byrine RR, Preminger GM. Does a ureteral access sheath facilitate ureteroscopy? J Urol. 2001;165(3):789–93.

    Article  PubMed  CAS  Google Scholar 

  14. Landman J, Kenkatesh R, Ragab M, Rehman J, Lee DI, Morrissey KG, et al. Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling catheter, ureteral occlusion balloon, and ureteral access sheath. Urology. 2002;60(4):584–7.

    Article  PubMed  Google Scholar 

  15. L’esperance JO, Ekeruo WO, Scales C, Marguet CG, Springhart WP, Maloney ME, et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal caculi. J Urol. 2005;66(2):252–5.

    Article  Google Scholar 

  16. Monga M, Bhayani S, Landman J, Conradie M, Sundaram C, Clayman R. Ureteral access for upper urinary tract disease: the access sheath. J Endourol. 2001;15(8):831–4.

    Article  PubMed  CAS  Google Scholar 

  17. Monga M, Gawlik A, Durfee W. Systematic evaluation of ureteral access sheaths. J Urol. 2004;63(5):834–6.

    Article  Google Scholar 

  18. Pedro RN, Hendlin K, Durfee WK, Monga M. Physical characteristics of next-generation ureteral access sheaths: buckling and kinking. J Urol. 2007;70(3):440–2.

    Article  Google Scholar 

  19. Monga M, Best S, Venkatesh R, Ames C, Lieber D, Vanlangendock R, et al. Prospective randomized comparison of 2 ureteral access sheaths during flexible retrograde ureteroscopy. J Urol. 2004;172(2):572–3.

    Article  PubMed  Google Scholar 

  20. Hendlin K, Lund B, Dockendorf K, Ramani A, Monga M. Radial dilation of ureteral balloons: comparative in vitro analysis. J Endourol. 2005;19(5):575–8.

    Article  PubMed  Google Scholar 

  21. Selmy G, Houssouna M, Begin LR, Coolsaet BOL, Elhilali M. Effect of balloon dilation of ureter on upper tract dynamics and ureteral wall morphology. J Endourol. 1993;7(3):211–9.

    Article  PubMed  CAS  Google Scholar 

  22. Herr HW. Crushing the stone: a brief history of lithotripsy, the first minimally invasive surgery. BJU Int. 2008;102(4):432–5.

    Article  PubMed  Google Scholar 

  23. Marguet CG, Sung JC, Springhart WP, L’Esperance JO, Zhou S, Zhong P, et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse ND:YAG laser and the holmium:YAG laser. J Urol. 2005;173(5):1797–800.

    Article  PubMed  Google Scholar 

  24. Nerli RB, Koura AC, Prabha V, Kamat G, Alur SB. Use of LMA Stonebreaker as an intracoporeal lithotrite in the management of ureteral calculi. J Endourol. 2008;22(4):641–3.

    Article  PubMed  Google Scholar 

  25. Krambeck AE, Miller NL, Humpheys MR, Nakada SY, Denstedt JD, Razvi H, et al. Randomized controlled, multicenter clinical trial comparing a dual-probe ultrasonic lithotrite with a single-probe lithotrite for percutaneous nephrolithotomy. BJU Int. 2010;107(5):824–8.

    Article  PubMed  Google Scholar 

  26. Teichman JMH, Vassar GJ, Glickman RD. Holmium:yttrium-aluminum-garnet lithotripsy efficiency varies with stone composition. Urology. 1998;52(3):392–7.

    Article  PubMed  CAS  Google Scholar 

  27. Vassar GJ, Teichman JMH, Glickman RD. Holmium:YAG lithotripsy efficiency varies with energy density. J Urol. 1998;160(2):471–6.

    Article  PubMed  CAS  Google Scholar 

  28. Nazif OA, Teichman J, Glickman RD, Welch AJ. Review of laser fibers: a practical guide for urologists. J Endourol. 2005;18(9):818–29.

    Article  Google Scholar 

  29. Dushinski JW, Lingeman JE. High-speed photographic evaluation of holmium laser. J Endourol. 1998;12(2):177–81.

    Article  PubMed  CAS  Google Scholar 

  30. Lee H, Ryan RT, Teichman JMH, Kim J, Choi B, Arakeri NV, et al. Stone retropulsion during holmium:YAG lithotripsy. J Urol. 2003;169(3):881–5.

    Article  PubMed  Google Scholar 

  31. Teichman JMH, Vassar GJ, Bellman GC, Bishoff JT. Holmium:YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye, or electrohydraulic lithotripsy. J Urol. 1998;159(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  32. Jeon SS, Hyun JH, Lee KS. A comparison of holmium:YAG laser with Lithoclast lithotripsy in ureteral calculi fragmentation. Int J Urol. 2005;12(6):544–7.

    Article  PubMed  Google Scholar 

  33. Teichman JM, Rao RD, Rogenes VJ, Harris JM. Ureteroscopic management of ureteral calculi: electrohydraulic versus holmium:YAG lithotripsy. J Urol. 1997;158(4):1357–61.

    Article  PubMed  CAS  Google Scholar 

  34. Calvano CT, Moran ME, White MD, Borhan-Manesh A, Mehlhaff BA. Experimental utilization of the holmium laser in a model of ureteroscopic lithotripsy: energy analysis. J Endourol. 1999;13(2):113–5.

    Article  PubMed  CAS  Google Scholar 

  35. Kuo RL, Aslan P, Zhong P, Preminger GM. Impact of holmium laser settings and fiber diameter on stone fragmentation and endoscope deflection. J Endourol. 1998;12(6):523–7.

    Article  PubMed  CAS  Google Scholar 

  36. Poon M, Beaghler M, Baldwin D. Flexible endoscope deflectability: changes using a variety of working instruments and laser fibers. J Endourol. 1997;11(4):247–9.

    Article  PubMed  CAS  Google Scholar 

  37. Maislos SD, Volpe M, Albert PS, Raboy A. Efficacy of the stone cone for treatment of proximal ureteral stones. J Endourol. 2004;18(9):862–4.

    Article  PubMed  CAS  Google Scholar 

  38. Wang CJ, Huang SW, Chang CH. Randomized trial of NTrap for proximal ureteral stones. J Urol. 2011;77(3):553–7.

    Article  Google Scholar 

  39. Vejdani K, Eisner BH, Pengune W, Stoller ML. Effect of laser insult on devices used to prevent stone retropulsion during ureteroscopic lithotripsy. J Endourol. 2009;23(4):705–7.

    Article  PubMed  Google Scholar 

  40. Holley PG, Sharma SK, Perry KT, Turk TM. Assessment of novel ureteral occlusion device and comparison with stone cone in prevention of stone fragment migration during lithotripsy. J Endourol. 2005;19(2):200–3.

    Article  PubMed  Google Scholar 

  41. Eisner BH, Dretler SP. Use of the stone cone for prevention of calculus retropulsion during Holmium:YAG laser lithotripsy: case series and review of the literature. Urol Int. 2009;82(3):356–60.

    Article  PubMed  Google Scholar 

  42. Farahat YA, Elbahnasy AM, Elashry OM. A randomized prospective controlled study for assessment of different ureteral occlusion devices in prevention of stone migration during pneumatic lithotripsy. J Urol. 2011;77(1):30–5.

    Article  Google Scholar 

  43. Rane A, Bradoo A, Rao P, Shivde S, Elhilali M, Anidjar M, et al. The use of a novel reverse thermosensitive polymer to prevent ureteral stone retropulsion during intracorporeal lithotripsy: a randomized controlled trial. J Urol. 2010;183(4):1417–21.

    Article  PubMed  Google Scholar 

  44. Sacco D, McDougal WS, Schwarz A. Preventing migration of stones during fragmentation with thermosensitive polymer. J Endourol. 2007;21(5):504–7.

    Article  PubMed  Google Scholar 

  45. Zeltser IS, Bagley DM. Basket design as a factor in retention and release of calculi in vitro. J Endourol. 2007;21(3):337–42.

    Article  PubMed  Google Scholar 

  46. Netsch C, Herrera G, Gross AJ, Bach T. In vitro evaluation of Nitinol stone retrieval baskets for flexible ureteroscopy. J Endourol. 2011;25(7):1217–20.

    Article  PubMed  Google Scholar 

  47. Monga M, Hendlin K, Lee C, Anderson JK. Systematic evaluation of stone basket dimensions. Urology. 2004;63(6):1042–4.

    Article  PubMed  Google Scholar 

  48. Salimi N, Mahajan A, Don J, Schwartz B. A novel stone retrieval basket for more efficient lithotripsy procedures. J Med Eng Technol. 2009;33(2):142–50.

    Article  PubMed  CAS  Google Scholar 

  49. Rosette JJ, Skrekas T, Segura JW. Handling and prevention of complications in stone basketing. Eur Urol. 2006;50:991–9.

    Article  PubMed  Google Scholar 

  50. Lukasewycz S, Hoffman N, Botnaru A, Deka PM, Monga M. Comparison of tipless and helical baskets in an in vitro ureteral model. Urology. 2004;64(3):435–8.

    Article  PubMed  Google Scholar 

  51. Hendlin K, Lee C, Anderson K, Monga M. Radial dilation force of tipless and helical stone baskets. J Endourol. 2004;18(10):946–7.

    Article  PubMed  Google Scholar 

  52. Korman E, Hendlin K, Monga M. Small diameter nitinol stone baskets: radial dilation force and dynamics of opening. J Endourol. 2011;25:1537–40. doi:10.1089/end.2010.0585. Epub 2011 Mar 25.

    Article  PubMed  Google Scholar 

  53. Kesler SS, Pierre SA, Brison DI, Preminger GM, Munver R. Use of the Escape nitinol stone retrieval basket facilitates fragmentation and extraction of ureteral and renal calculi: a pilot study. J Endourol. 2008;22(6):1213–7.

    Article  PubMed  Google Scholar 

  54. Takayasu H, Aso Y, Takagi T, Go T. Clinical application of fiber-optic pyeloureteroscope. Urol Int. 1971;26(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  55. Multescu R, Geavlete B, Georgescu D, Geavlete P. Conventional fiberoptic flexible ureteroscope versus fourth generation digital flexible ureteroscope: a critical comparison. J Endourol. 2010;24(1):17–21.

    Article  PubMed  Google Scholar 

  56. Bagley DH. Intrarenal access with the flexible ureteropyeloscope: effect of active and passive deflection. J Endourol. 1993;7(3):221–4.

    Article  PubMed  CAS  Google Scholar 

  57. Holden T, Pedro R, Hendlin K, Durfee W, Monga M. Evidence-based instrumentation for flexible ureteroscopy: a review. J Endourol. 2008;22(7):1423–6.

    Article  PubMed  Google Scholar 

  58. Ortiz Alvarado O, Haberman K, Chotikawanich E, Monga M. The Cobra dual-channel flexible ureteroscope: novel function, novel applications. J Endourol Part B Videourol. 2010. doi:10.1089/vid.2010.0002.

  59. Afane JS, Olweny EO, Bercowsky E, Sundaram CP, Dunn MD, Shalhav AL, et al. Durability of flexible ureteroscopes: a single center evaluation of the durability and function of the new endoscopes smaller than 9F. J Urol. 2000;164(4):1164–8.

    Article  PubMed  CAS  Google Scholar 

  60. Carey RI, Gomez CS, Maurici G, Lynne CM, Leveillee RJ, Bird VG. Frequency of ureteroscope damage seen at tertiary care center. J Urol. 2006;176(2):607–10.

    Article  PubMed  Google Scholar 

  61. Bader MJ, Gratzke C, Walther S, Schlenker B, Tilki D, Hocaoglu Y, et al. The PolyScope: a modular design, semidisposable flexible ureterorenoscope system. J Endourol. 2010;24(7):1061–6.

    Article  PubMed  Google Scholar 

  62. Hudsen RG, Conlin M, Bagley D. Ureteric access with flexible ureteroscopes: effect of the size of the ureteroscope. BJU Int. 2005;95(7):1043–4.

    Article  Google Scholar 

  63. Grasso M, Bagley D. Small diameter, actively deflectable, flexible ureteropyeloscopy. J Urol. 1998;160(5):1648–53.

    Article  PubMed  CAS  Google Scholar 

  64. Monga M, Best S, Venkatesh R, Ames C, Lee C, Kuskowski M, et al. Durability of flexible ureteroscopes: a randomized prospective study. J Urol. 2006;176(1):137–41.

    Article  PubMed  Google Scholar 

  65. Knudsen B, Miyaoka R, Shah K, Holden T, Turk TM, Pedro RN, et al. Durability of the next generation flexible fiberoptic ureteroscopes: a randomized prospective multi-institutional clinical trial. Urology. 2010;75(3):534–8.

    Article  PubMed  Google Scholar 

  66. Multescu R, Geavlete GD, Geavlet P. Convention fiberoptic flexible ureteroscope versus fourth generation digital flexible ureteroscope: a critical comparison. J Endourol. 2010;24(1):17–21.

    Article  PubMed  Google Scholar 

  67. Binbay M, Yuruk E, Akman T, Ozgor F, Seyrek M, Ozkuvanci U, et al. Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol. 2010;24(12):1929–34.

    Article  PubMed  Google Scholar 

  68. Zilberman DE, Lipkin ME, Ferrandino MN, Simmons WN, Mancini JG, Raymundo ME, et al. The digital flexible ureteroscope: in vitro assessment of optical characteristics. J Endourol. 2011;25(3):519–22.

    Article  PubMed  Google Scholar 

  69. Bach T, Geavlete B, Herrmann TR, Gross AJ. Working tools in flexible ureterorenoscopy – influence on flow and deflection: what does matter? J Endourol. 2008;22(8):1639–43.

    Article  PubMed  CAS  Google Scholar 

  70. Blew B, Dagnone AJ, Pace KT, Honey RJ. Comparison of peditrol irrigation device and common methods of irrigation. J Endourol. 2005;19(5):562–5.

    Article  PubMed  Google Scholar 

  71. Hendlin K, Weiland D, Monga M. Impact of irrigation systems on stone migration. J Endourol. 2008;22(3):453–8.

    Article  PubMed  Google Scholar 

  72. Lechevallier E, Luciani M, Nahon O, Lay F, Coulange C. Transurethral ureterorenolithotripsy using new automated irrigation/suction system controlling pressure and flow compared with standard irrigation: a randomized pilot study. J Endourol. 2003;17(2):97–101.

    Article  PubMed  Google Scholar 

  73. Desai MM, Grover R, Aron M, Ganpule A, Joshi SS, Desai MR, et al. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol. 2011;186(2):563–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Monga M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Sarkissian, C., Monga, M. (2012). The Stone Surgeon/Lithotomists’ Armamentarium: Today and Tomorrow. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_37

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics