Skip to main content

The Use of Low-Dose CT Scanning

  • Chapter
  • First Online:
Urolithiasis

Abstract

Imaging modalities such as ultrasound do not have the sensitivity and specificity of computed tomography (CT) scan in the accurate assessment of urolithiasis. However, concerns regarding the exposure of patients to multiple investigatory CT scans, given the radiation exposure associated with such examinations, have led to definition of protocols that reduce radiation exposure while achieving similar diagnostic efficiency as standard CT scanning. With improved CT protocols using the information obtained during a CT scan, less radiation is required to provide adequate information on urinary stone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrandino MN, Bagrodia A, Pierre SA, Scales Jr CD, Rampersaud E, Pearle MS, et al. Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J Urol. 2009;181(2):668–72, discussion 73.

    Article  PubMed  Google Scholar 

  3. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.

    PubMed  CAS  Google Scholar 

  4. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA. 2003;100(24):13761–6.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner DJ, Sachs RK. Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat Environ Biophys. 2006;44(4):253–6.

    Article  PubMed  Google Scholar 

  6. Eisenberg MJ, Afilalo J, Lawler PR, Abrahamowicz M, Richard H, Pilote L. Cancer risk related to low-dose ionizing radiation from cardiac imaging in patients after acute myocardial infarction. CMAJ. 2011;183(4):430–6.

    Article  PubMed  Google Scholar 

  7. Griffey RT, Sodickson A. Cumulative radiation exposure and cancer risk estimates in emergency department patients undergoing repeat or multiple CT. AJR Am J Roentgenol. 2009;192(4):887–92.

    Article  PubMed  Google Scholar 

  8. Morgan WF, Schwartz JL. Environmental Mutagen Society symposium on ‘Risks of low dose, low dose rate exposures of ionizing radiation to humans’. Int J Radiat Biol. 2007;83(7):491–9.

    Article  PubMed  CAS  Google Scholar 

  9. Shimizu Y, Kato H, Schull WJ, Preston DL, Fujita S, Pierce DA. Studies of the mortality of A-bomb survivors. 9. Mortality, 1950–1985: part 1. Comparison of risk coefficients for site-specific cancer mortality based on the DS86 and T65DR shielded kerma and organ doses. Radiat Res. 1989;118(3):502–24.

    Article  PubMed  CAS  Google Scholar 

  10. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 2003;160(4):381–407.

    Article  PubMed  CAS  Google Scholar 

  11. Preston DL, Pierce DA, Shimizu Y, Cullings HM, Fujita S, Funamoto S, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res. 2004;162(4):377–89.

    Article  PubMed  CAS  Google Scholar 

  12. Shimizu Y, Pierce DA, Preston DL, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, part II. Noncancer mortality: 1950–1990. Radiat Res. 1999;152(4):374–89.

    Article  PubMed  CAS  Google Scholar 

  13. Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res. 2000;154(2):178–86.

    Article  PubMed  CAS  Google Scholar 

  14. Zablotska LB, Ashmore JP, Howe GR. Analysis of mortality among Canadian nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res. 2004;161(6):633–41.

    Article  PubMed  CAS  Google Scholar 

  15. Colgan PA, Currivan L, Fenton D. An assessment of annual whole-body occupational radiation exposure in Ireland (1996–2005). Radiat Prot Dosimetry. 2008;128(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  16. Howe GR, Zablotska LB, Fix JJ, Egel J, Buchanan J. Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res. 2004;162(5):517–26.

    Article  PubMed  CAS  Google Scholar 

  17. Wing S, Richardson DB. Age at exposure to ionising radiation and cancer mortality among Hanford workers: follow up through 1994. Occup Environ Med. 2005;62(7):465–72.

    Article  PubMed  CAS  Google Scholar 

  18. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res. 2007;167(4):396–416.

    Article  PubMed  CAS  Google Scholar 

  19. Wrixon AD. New ICRP recommendations. J Radiol Prot. 2008;28(2):161–8.

    Article  PubMed  CAS  Google Scholar 

  20. Wrixon AD. New recommendations from the International Commission on Radiological Protection – a review. Phys Med Biol. 2008;53(8):R41–60.

    Article  PubMed  CAS  Google Scholar 

  21. Wallo A, Domotor S, Vazquez G. U.S. Department of energy policies, directives, and guidance for radiological control and release of property. Health Phys. 2006;91(5):526–8.

    Article  PubMed  CAS  Google Scholar 

  22. Kojo K, Helminen M, Leuthold G, Aspholm R, Auvinen A. Estimating the cosmic radiation dose for a cabin crew with flight timetables. J Occup Environ Med. 2007;49(5):540–5.

    Article  PubMed  Google Scholar 

  23. Zilberman DE, Tsivian M, Lipkin ME, Ferrandino MN, Frush DP, Paulson EK, et al. Low dose computerized tomography for detection of urolithiasis – its effectiveness in the setting of the urology clinic. J Urol. 2011;185(3):910–4.

    Article  PubMed  Google Scholar 

  24. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin North Am. 2009;47(1):27–40.

    Article  PubMed  Google Scholar 

  25. Paulson EK, Weaver C, Ho LM, Martin L, Li J, Darsie J, et al. Conventional and reduced radiation dose of 16-MDCT for detection of nephrolithiasis and ureterolithiasis. AJR Am J Roentgenol. 2008;190(1):151–7.

    Article  PubMed  Google Scholar 

  26. Heneghan JP, McGuire KA, Leder RA, DeLong DM, Yoshizumi T, Nelson RC. Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques. Radiology. 2003;229(2):575–80.

    Article  PubMed  Google Scholar 

  27. Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol. 2007;188(4):927–33.

    Article  PubMed  Google Scholar 

  28. Kim BS, Hwang IK, Choi YW, Namkung S, Kim HC, Hwang WC, et al. Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic: prospective comparative study. Acta Radiol. 2005;46(7):756–63.

    Article  PubMed  Google Scholar 

  29. Frush DP, Slack CC, Hollingsworth CL, Bisset GS, Donnelly LF, Hsieh J, et al. Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients. AJR Am J Roentgenol. 2002;179(5):1107–13.

    PubMed  Google Scholar 

  30. Jellison FC, Smith JC, Heldt JP, Spengler NM, Nicolay LI, Ruckle HC, et al. Effect of low dose radiation computerized tomography protocols on distal ureteral calculus detection. J Urol. 2009;182(6):2762–7.

    Article  PubMed  Google Scholar 

  31. Mulkens TH, Daineffe S, De Wijngaert R, Bellinck P, Leonard A, Smet G, et al. Urinary stone disease: comparison of standard-dose and low-dose with 4D MDCT tube current modulation. AJR Am J Roentgenol. 2007;188(2):553–62.

    Article  PubMed  Google Scholar 

  32. Tartari S, Rizzati R, Righi R, Deledda A, Terrani S, Benea G. Low-dose unenhanced CT protocols according to individual body size for evaluating suspected renal colic: cumulative radiation exposures. Radiol Med. 2010;115(1):105–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean A. Pierre M.D., FRCS (C) Urology .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Pierre, S.A. (2012). The Use of Low-Dose CT Scanning. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_35

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics