Advertisement

Engineering Luciferases for Assays and Imaging

Chapter

Abstract

Luciferases have served a number of purposes in biomedical applications, including within reporter gene and split reporter complementation assays. These proteins, however, have not evolved for the purpose of biomedical research, and it is not surprising that the utility and robustness of these assays can be improved by protein engineering of the luciferase. In this chapter, we provide an overview of luciferases, protein engineering, and how protein engineering is applied to luciferases.

Keywords

Light Output Renilla Luciferase Protein Engineering Random Mutagenesis Codon Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee J (2008) Bioluminescence: the first 3000 years. J Siberian Federal Univ Biol 1(3):194–205Google Scholar
  2. 2.
    Prescher JA, Contag CH (2010) Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14(1):80–89. doi:S1367-5931(09)00183-5 [pii]  10.1016/j.cbpa.2009.11.001
  3. 3.
    Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708. doi: 10.1126/science.1174269 CrossRefGoogle Scholar
  4. 4.
    Viviani VR (2002) The origin, diversity, and structure function relationships of insect luciferases. Cell Mol Life Sci 59(11):1833–1850CrossRefGoogle Scholar
  5. 5.
    Fraga H, Fernandes D, Fontes R, Esteves da Silva JC (2005) Coenzyme A affects firefly luciferase luminescence because it acts as a substrate and not as an allosteric effector. FEBS J 272(20):5206–5216. doi: 10.1111/j.1742-4658.2005.04895.x CrossRefGoogle Scholar
  6. 6.
    Inouye S (2010) Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cell Mol Life Sci 67(3):387–404. doi: 10.1007/s00018-009-0170-8 CrossRefGoogle Scholar
  7. 7.
    Haddock SHD, Case JF (1999) Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores. Mar Biol 133(3):571–582CrossRefGoogle Scholar
  8. 8.
    Vassel N, Cox CD, Naseem R, Morse V, Evans RT, Power RL, Brancale A, Wann KT, Campbell AK (2012) Enzymatic activity of albumin shown by coelenterazine chemiluminescence. Lumin J Biol Chem Lumin 27(3):234–241. doi: 10.1002/bio.2357 CrossRefGoogle Scholar
  9. 9.
    Inouye S, Sahara-Miura Y, Sato J, Iimori R, Yoshida S, Hosoya T (2013) Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines. Protein Expr Purif 88(1):150–156. doi: 10.1016/j.pep.2012.12.006 CrossRefGoogle Scholar
  10. 10.
    Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19(9):391–400. doi: 10.1093/protein/gzl023 CrossRefGoogle Scholar
  11. 11.
    Stepanyuk GA, Xu H, Wu CK, Markova SV, Lee J, Vysotski ES, Wang BC (2008) Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells. Protein Expr Purif 61(2):142–148. doi: 10.1016/j.pep.2008.05.013 CrossRefGoogle Scholar
  12. 12.
    Goerke AR, Loening AM, Gambhir SS, Swartz JR (2008) Cell-free metabolic engineering promotes high-level production of bioactive Gaussia princeps luciferase. Metab Eng 10(3–4):187–200. doi: 10.1016/j.ymben.2008.04.001 CrossRefGoogle Scholar
  13. 13.
    Takenaka Y, Yamaguchi A, Tsuruoka N, Torimura M, Gojobori T, Shigeri Y (2012) Evolution of bioluminescence in marine planktonic copepods. Mol Biol Evol 29(6):1669–1681. doi: 10.1093/molbev/mss009 CrossRefGoogle Scholar
  14. 14.
    Inouye S, Sahara Y (2008) Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps. Biochem Biophys Res Commun 365(1):96–101. doi: 10.1016/j.bbrc.2007.10.152 CrossRefGoogle Scholar
  15. 15.
    Tzertzinis G, Schildkraut E, Schildkraut I (2012) Substrate cooperativity in marine luciferases. PLoS ONE 7(6):e40099. doi: 10.1371/journal.pone.0040099 CrossRefGoogle Scholar
  16. 16.
    Inouye S, Sasaki S (2007) Overexpression, purification and characterization of the catalytic component of Oplophorus luciferase in the deep-sea shrimp Oplophorus gracilirostris. Protein Expr Purif 56(2):261–268. doi: 10.1016/j.pep.2007.08.002 CrossRefGoogle Scholar
  17. 17.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857. doi: 10.1021/cb3002478 CrossRefGoogle Scholar
  18. 18.
    Nakajima Y, Kobayashi K, Yamagishi K, Enomoto T, Ohmiya Y (2004) cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod Cypridina noctiluca. Biosci Biotechnol Biochem 68(3):565–570CrossRefGoogle Scholar
  19. 19.
    Suzuki C, Nakajima Y, Akimoto H, Wu C, Ohmiya Y (2005) A new additional reporter enzyme, dinoflagellate luciferase, for monitoring of gene expression in mammalian cells. Gene 344:61–66. doi: 10.1016/j.gene.2004.09.028 CrossRefGoogle Scholar
  20. 20.
    Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS ONE 5(8):e12441. doi: 10.1371/journal.pone.0012441 CrossRefGoogle Scholar
  21. 21.
    Ramanathan R, Burbelo PD, Groot S, Iadarola MJ, Neva FA, Nutman TB (2008) A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J Infect Dis 198(3):444–451. doi: 10.1086/589718 CrossRefGoogle Scholar
  22. 22.
    Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11(1):3–11CrossRefGoogle Scholar
  23. 23.
    Badran AH, Furman JL, Ma AS, Comi TJ, Porter JR, Ghosh I (2011) Evaluating the global CpG methylation status of native DNA utilizing a bipartite split-luciferase sensor. Anal Chem 83(18):7151–7157. doi: 10.1021/ac2015239 CrossRefGoogle Scholar
  24. 24.
    Jester BW, Gaj A, Shomin CD, Cox KJ, Ghosh I (2012) Testing the promiscuity of commercial kinase inhibitors against the AGC kinase group using a split-luciferase screen. J Med Chem 55(4):1526–1537. doi: 10.1021/jm201265f CrossRefGoogle Scholar
  25. 25.
    Shekhawat SS, Campbell ST, Ghosh I (2011) A comprehensive panel of turn-on caspase biosensors for investigating caspase specificity and caspase activation pathways. Chem Biochem 12(15):2353–2364. doi: 10.1002/cbic.201100372 Google Scholar
  26. 26.
    Anderson JM, Cormier MJ (1976) Transductive coupling in bioluminescence: effects of monovalent cations and ionophores on the calcium-triggered luminescence of Renilla lumisomes. Biochem Biophys Res Commun 68(4):1234–1241CrossRefGoogle Scholar
  27. 27.
    Loening AM, Gambhir SS (2006) Technologies for imaging with bioluminescently labeled probes. Thesis (Ph D), Stanford UniversityGoogle Scholar
  28. 28.
    Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4(8):641–643. doi: 10.1038/nmeth1070 CrossRefGoogle Scholar
  29. 29.
    White PJ, Squirrell DJ, Arnaud P, Lowe CR, Murray JA (1996) Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354. Biochem J 319(2):343–350Google Scholar
  30. 30.
    Shapiro E, Lu C, Baneyx F (2005) A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng Des Sel 18(12):581–587. doi:gzi066 [pii]  10.1093/protein/gzi066
  31. 31.
    Koksharov MI, Ugarova NN (2011) Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng Des Sel 24(11):835–844. doi: 10.1093/protein/gzr044 CrossRefGoogle Scholar
  32. 32.
    Fujii H, Noda K, Asami Y, Kuroda A, Sakata M, Tokida A (2007) Increase in bioluminescence intensity of firefly luciferase using genetic modification. Anal Biochem 366(2):131–136. doi: 10.1016/j.ab.2007.04.018 CrossRefGoogle Scholar
  33. 33.
    Koksharov MI, Ugarova NN (2008) Random mutagenesis of Luciola mingrelica firefly luciferase. Mutant enzymes with bioluminescence spectra showing low pH sensitivity. Biochemistry (Mosc) 73(8):862–869CrossRefGoogle Scholar
  34. 34.
    Li X, Nakajima Y, Niwa K, Viviani VR, Ohmiya Y (2010) Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging. Protein Sci 19(1):26–33. doi: 10.1002/pro.279 Google Scholar
  35. 35.
    Koksharov MI, Ugarova NN (2011) Triple substitution G216N/A217L/S398M leads to the active and thermostable Luciola mingrelica firefly luciferase. Photochem Photobiol Sci 10(6):931–938. doi: 10.1039/c0pp00318b CrossRefGoogle Scholar
  36. 36.
    Branchini BR, Southworth TL, Murtiashaw MH, Boije H, Fleet SE (2003) A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry 42(35):10429–10436. doi: 10.1021/bi030099x CrossRefGoogle Scholar
  37. 37.
    Nazari M, Hosseinkhani S (2011) Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase. Photochem Photobiol Sci 10(7):1203–1215. doi: 10.1039/c1pp05012e CrossRefGoogle Scholar
  38. 38.
    Law GH, Gandelman OA, Tisi LC, Lowe CR, Murray JA (2006) Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance. Biochem J 397(2):305–312. doi: 10.1042/BJ20051847 CrossRefGoogle Scholar
  39. 39.
    Maguire CA, van der Mijn JC, Degeling MH, Morse D, Tannous BA (2011) Codon-optimized Luciola italica luciferase variants for mammalian gene expression in culture and in vivo. Mol Imaging. doi: 10.2310/7290.2011.00022 Google Scholar
  40. 40.
    Branchini BR, Ablamsky DM, Davis AL, Southworth TL, Butler B, Fan F, Jathoul AP, Pule MA (2010) Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem 396(2):290–297. doi: 10.1016/j.ab.2009.09.009 CrossRefGoogle Scholar
  41. 41.
    Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther J Am Soc Gene Ther 11(3):435–443. doi: 10.1016/j.ymthe.2004.10.016 CrossRefGoogle Scholar
  42. 42.
    Zhuang Y, Butler B, Hawkins E, Paguio A, Orr L, Wood MG, Wood KV (2001) New synthetic Renilla gene and assay system increase expression, reliability and sensitivity. Promega Notes, vol 79Google Scholar
  43. 43.
    Kanno A, Yamanaka Y, Hirano H, Umezawa Y, Ozawa T (2007) Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew Chem Int Ed Engl 46(40):7595–7599. doi: 10.1002/anie.200700538 CrossRefGoogle Scholar
  44. 44.
    Worley CK, Ling R, Callis J (1998) Engineering in vivo instability of firefly luciferase and Escherichia coli beta-glucuronidase in higher plants using recognition elements from the ubiquitin pathway. Plant Mol Biol 37(2):337–347CrossRefGoogle Scholar
  45. 45.
    Leclerc GM, Boockfor FR, Faught WJ, Frawley LS (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. Biotechniques 29(3):590–591, 594–596, 598 passimGoogle Scholar
  46. 46.
    Santos EB, Yeh R, Lee J, Nikhamin Y, Punzalan B, Punzalan B, La Perle K, Larson SM, Sadelain M, Brentjens RJ (2009) Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med 15(3):338–344. doi: 10.1038/nm.1930 CrossRefGoogle Scholar
  47. 47.
    Stepanyuk GA, Unch J, Malikova NP, Markova SV, Lee J, Vysotski ES (2010) Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase. Anal Bioanal Chem 398(4):1809–1817. doi: 10.1007/s00216-010-4106-9 CrossRefGoogle Scholar
  48. 48.
    Cali JJ, Niles A, Valley MP, O’Brien MA, Riss TL, Shultz J (2008) Bioluminescent assays for ADMET. Expert Opin Drug Metab Toxicol 4(1):103–120. doi: 10.1517/17425255.4.1.103 CrossRefGoogle Scholar
  49. 49.
    Woo J, Howell MH, von Arnim AG (2008) Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci 17(4):725–735. doi: 10.1110/ps.073355508 CrossRefGoogle Scholar
  50. 50.
    Markova SV, Burakova LP, Vysotski ES (2012) High-active truncated luciferase of copepod Metridia longa. Biochem Biophys Res Commun 417(1):98–103. doi: 10.1016/j.bbrc.2011.11.063 CrossRefGoogle Scholar
  51. 51.
    Kim SB, Suzuki H, Sato M, Tao H (2011) Superluminescent variants of marine luciferases for bioassays. Anal Chem 83(22):8732–8740. doi: 10.1021/ac2021882 CrossRefGoogle Scholar
  52. 52.
    Hall M, Gruber M, Hannah RR, Jennens-Clough ML, Wood KV (1998) Stabilization of firefly luciferase using directed evolution. In: Roda A, Pazzagli M, Kricka L, Stanley P (eds) Bioluminescence and Chemiluminescence: Perspectives for the 21st Century. Wiley, Chichester, UKGoogle Scholar
  53. 53.
    Branchini BR, Ablamsky DM, Murtiashaw MH, Uzasci L, Fraga H, Southworth TL (2007) Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 361(2):253–262. doi: 10.1016/j.ab.2006.10.043 CrossRefGoogle Scholar
  54. 54.
    Baggett B, Roy R, Momen S, Morgan S, Tisi L, Morse D, Gillies RJ (2004) Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence. Mol Imaging 3(4):324–332. doi: 10.1162/1535350042973553 CrossRefGoogle Scholar
  55. 55.
    Walls ZF (2008) Molecular imaging of gene expression at the level of RNA in living animalsGoogle Scholar
  56. 56.
    Imani M, Hosseinkhani S, Ahmadian S, Nazari M (2010) Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity. Photochem Photobiol Sci 9(8):1167–1177. doi: 10.1039/c0pp00105h CrossRefGoogle Scholar
  57. 57.
    Nazari M, Hosseinkhani S, Hassani L (2012) Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective. Photochem Photobiol Sci. doi: 10.1039/c2pp25140j
  58. 58.
    Riahi-Madvar A, Hosseinkhani S (2009) Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis. Protein Eng Des Sel 22(11):655–663. doi: 10.1093/protein/gzp047 CrossRefGoogle Scholar
  59. 59.
    Liu J, Escher A (1999) Improved assay sensitivity of an engineered secreted Renilla luciferase. Gene 237(1):153–159CrossRefGoogle Scholar
  60. 60.
    Wiles S, Ferguson K, Stefanidou M, Young DB, Robertson BD (2005) Alternative luciferase for monitoring bacterial cells under adverse conditions. Appl Environ Microbiol 71(7):3427–3432. doi: 10.1128/AEM.71.7.3427-3432.2005 CrossRefGoogle Scholar
  61. 61.
    Tafreshi NKH, Sadeghizadeh M, Emamzadeh R, Ranjbar B, Naderi-Manesh H, Hosseinkhani S (2008) Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases. Biochem J 412(1):27–33. doi:BJ20070733 [pii]  10.1042/BJ20070733 Google Scholar
  62. 62.
    Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345(1):140–148. doi: 10.1016/j.ab.2005.07.015 CrossRefGoogle Scholar
  63. 63.
    Tisi LC, White PJ, Squirrell DJ, Murphy MJ, Lowe CR, Murray JA (2002) Development of a thermostable firefly luciferase. Anal Chim Acta 457(1):115–123Google Scholar
  64. 64.
    Kajiyama N, Nakano E (1993) Thermostabilization of firefly luciferase by a single amino acid substitution at position 217. Biochemistry 32(50):13795–13799CrossRefGoogle Scholar
  65. 65.
    Moradi A, Hosseinkhani S, Naderi-Manesh H, Sadeghizadeh M, Alipour BS (2009) Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases. Biochemistry 48(3):575–582. doi: 10.1021/bi802057w CrossRefGoogle Scholar
  66. 66.
    Tafreshi NKH, Hosseinkhani S, Sadeghizadeh M, Sadeghi M, Ranjbar B, Naderi-Manesh H (2007) The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase. J Biol Chem 282(12):8641–8647. doi: 10.1074/jbc.M609271200 CrossRefGoogle Scholar
  67. 67.
    Loening AM, Dragulescu-Andrasi A, Gambhir SS (2010) A red-shifted Renilla luciferase for transient reporter-gene expression. Nat Methods 7(1):5–6. doi: 10.1038/nmeth0110-05 CrossRefGoogle Scholar
  68. 68.
    Sherf BA, Wood KV (1994) Firefly luciferase engineered for improved genetic reporting. Promega Notes, vol 49Google Scholar
  69. 69.
    Paguio A, Almond B, Fan F, Stecha PF, Garvin D, Wood MG, Wood KV (2005) pGL4 vectors: a new generation of luciferase reporter vectors. Promega Notes, vol 89Google Scholar
  70. 70.
    Pichler A, Prior JL, Piwnica-Worms D (2004) Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci USA 101(6):1702–1707. doi: 10.1073/pnas.0304326101 CrossRefGoogle Scholar
  71. 71.
    Gil JS, Machado HB, Herschman HR (2012) A method to rapidly and accurately compare the relative efficacies of non-invasive imaging reporter genes in a mouse model and its application to luciferase reporters. Mol Imaging Biol 14(4):462–471. doi: 10.1007/s11307-011-0515-1 CrossRefGoogle Scholar
  72. 72.
    Ward WW, Cormier MJ (1979) An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem 254(3):781–788Google Scholar
  73. 73.
    Hoshino H, Nakajima Y, Ohmiya Y (2007) Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nat Methods 4(8):637–639. doi: 10.1038/nmeth1069 CrossRefGoogle Scholar
  74. 74.
    Saito K, Chang YF, Horikawa K, Hatsugai N, Higuchi Y, Hashida M, Yoshida Y, Matsuda T, Arai Y, Nagai T (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. Nat Commun 3:1262. doi: 10.1038/ncomms2248 CrossRefGoogle Scholar
  75. 75.
    Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73(11):2516–2521CrossRefGoogle Scholar
  76. 76.
    Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101(33):12288–12293. doi: 10.1073/pnas.0404041101 CrossRefGoogle Scholar
  77. 77.
    Paulmurugan R, Gambhir SS (2007) Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions. Anal Chem 79(6):2346–2353. doi: 10.1021/ac062053q CrossRefGoogle Scholar
  78. 78.
    Kim SB, Otani Y, Umezawa Y, Tao H (2007) Bioluminescent indicator for determining protein-protein interactions using intramolecular complementation of split click beetle luciferase. Anal Chem 79(13):4820–4826. doi: 10.1021/ac0621571 CrossRefGoogle Scholar
  79. 79.
    Misawa N, Kafi AK, Hattori M, Miura K, Masuda K, Ozawa T (2010) Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: an approach to the study of G-protein-coupled receptors. Anal Chem 82(6):2552–2560. doi: 10.1021/ac100104q CrossRefGoogle Scholar
  80. 80.
    Paulmurugan R, Gambhir SS (2003) Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal Chem 75(7):1584–1589CrossRefGoogle Scholar
  81. 81.
    Kaihara A, Kawai Y, Sato M, Ozawa T, Umezawa Y (2003) Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Anal Chem 75(16):4176–4181CrossRefGoogle Scholar
  82. 82.
    Stefan E, Aquin S, Berger N, Landry CR, Nyfeler B, Bouvier M, Michnick SW (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci USA 104(43):16916–16921. doi: 10.1073/pnas.0704257104 CrossRefGoogle Scholar
  83. 83.
    Ishikawa H, Meng F, Kondo N, Iwamoto A, Matsuda Z (2012) Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Protein Eng Des Sel 25(12):813–820. doi: 10.1093/protein/gzs051 CrossRefGoogle Scholar
  84. 84.
    Remy I, Michnick SW (2006) A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 3(12):977–979. doi: 10.1038/nmeth979 CrossRefGoogle Scholar
  85. 85.
    Kim SB, Sato M, Tao H (2009) Split Gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells. Anal Chem 81(1):67–74. doi: 10.1021/ac801658y Google Scholar
  86. 86.
    Harwood KR, Mofford DM, Reddy GR, Miller SC (2011) Identification of mutant firefly luciferases that efficiently utilize aminoluciferins. Chem Biol 18(12):1649–1657. doi: 10.1016/j.chembiol.2011.09.019 CrossRefGoogle Scholar
  87. 87.
    Hattori N, Kajiyama N, Maeda M, Murakami S (2002) Mutant luciferase enzymes from fireflies with increased resistance to benzalkonium chloride. Biosci Biotechnol Biochem 66(12):2587–2593CrossRefGoogle Scholar
  88. 88.
    Hart RC, Matthews JC, Hori K, Cormier MJ (1979) Renilla reniformis bioluminescence: luciferase-catalyzed production of nonradiating excited states from luciferin analogues and elucidation of the excited state species involved in energy transfer to Renilla green fluorescent protein. Biochemistry 18(11):2204–2210CrossRefGoogle Scholar
  89. 89.
    Matthews JC, Hori K, Cormier MJ (1977) Purification and properties of Renilla reniformis luciferase. Biochemistry 16(1):85–91CrossRefGoogle Scholar
  90. 90.
    Inouye S, Shimomura O (1997) The use of Renilla luciferase, Oplophorus luciferase, and apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate. Biochem Biophys Res Commun 233(2):349–353. doi: 10.1006/bbrc.1997.6452 Google Scholar
  91. 91.
    de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82(23):7870–7873CrossRefGoogle Scholar
  92. 92.
    Viviani VR, Bechara EJ, Ohmiya Y (1999) Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry 38(26):8271–8279. doi: 10.1021/bi9900830 CrossRefGoogle Scholar
  93. 93.
    Wood KV, Lam YA, Seliger HH, McElroy WD (1989) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244(4905):700–702CrossRefGoogle Scholar
  94. 94.
    Lorenz WW, McCann RO, Longiaru M, Cormier MJ (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci USA 88(10):4438–4442CrossRefGoogle Scholar
  95. 95.
    Verhaegent M, Christopoulos TK (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74(17):4378–4385CrossRefGoogle Scholar
  96. 96.
    Markova SV, Golz S, Frank LA, Kalthof B, Vysotski ES (2004) Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme. J Biol Chem 279(5):3212–3217. doi: 10.1074/jbc.M309639200 CrossRefGoogle Scholar
  97. 97.
    Inouye S, Watanabe K, Nakamura H, Shimomura O (2000) Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase(1). FEBS Lett 481(1):19–25CrossRefGoogle Scholar
  98. 98.
    Thompson EM, Nagata S, Tsuji FI (1989) Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proc Natl Acad Sci USA 86(17):6567–6571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of RadiologyStanford University School of MedicineStanfordUSA
  2. 2.Department of Pharmaceutical SciencesEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations