Skip to main content

Engineering Biomaterials for Anchorage-Dependent and Non-anchorage-Dependent Therapeutic Cell Delivery in Translational Medicine

  • Chapter
  • First Online:
  • 2573 Accesses

Abstract

The delivery of functional and viable biological cells may potentially become a medical solution to replace the lost or abnormal cells, tissues, and organs. Cell delivery methods should deliver and localize viable and functional cells to the target site with high efficiency to repair the defect. Many research efforts have been focused on developing cell delivery vehicles, which are scaffold systems that carry cells. The biomaterials used in the scaffolds are crucial in determining the success of cell delivery—cells are able to interact with the environmental cues presented by biomaterials and modify their behavior accordingly. Cells can be categorized according to their dependence on anchorage to the extracellular matrix (ECM)—anchorage-dependent cells (ADCs) such as muscle cells and neurons require extensive cell adhesion to a substrate in order to survive and function properly, while non-anchorage-dependent cells (non-ADCs) such as chondrocytes and hepatocytes do not and often exhibit a rounded morphology in native environment. Here, the different cell delivery structures and their development in delivering both ADCs and non-ADCs are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bryers JD, Giachelli CM, Ratner BD (2012) Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol Bioeng 109(8):1898–1911. doi:10.1002/bit.24559

    Article  Google Scholar 

  2. Malda J, Frondoza CG (2006) Microcarriers in the engineering of cartilage and bone. Trends Biotechnol 24(7):299–304. doi:http://dx.doi.org/10.1016/j.tibtech.2006.04.009

    Google Scholar 

  3. Hernandez RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62(7–8):711–730

    Article  Google Scholar 

  4. Nafea EH, Marson A, Poole-Warren LA, Martens PJ (2011) Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 154(2):110–122

    Article  Google Scholar 

  5. Shastri VP (2009) In vivo engineering of tissues: biological considerations, challenges, strategies, and future directions. Adv Mater 21(32–33):3246–3254. doi:10.1002/adma.200900608

    Article  Google Scholar 

  6. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124(4):619–626

    Article  Google Scholar 

  7. Chen Z-L, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of Laminin. Cell 91(7):917–925. doi:http://dx.doi.org/10.1016/S0092-8674(00)80483-3

    Google Scholar 

  8. Damsky CH, Ilić D (2002) Integrin signaling: it’s where the action is. Curr Opin Cell Biol 14(5):594–602. doi:http://dx.doi.org/10.1016/S0955-0674(02)00368-X

    Google Scholar 

  9. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226(2):380–393

    Article  Google Scholar 

  10. Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76(11):1352–1364

    Article  Google Scholar 

  11. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91(5):627–637

    Article  Google Scholar 

  12. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8(3):705–711

    Article  Google Scholar 

  13. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241

    Article  Google Scholar 

  14. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535

    Article  Google Scholar 

  15. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192

    Article  Google Scholar 

  16. Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2(1):63–67

    Article  Google Scholar 

  17. Thornberry NA (1998) Caspases: key mediators of apoptosis. Chem Biol 5(5):R97–103

    Article  Google Scholar 

  18. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413

    Article  Google Scholar 

  19. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296(5573):1635–1636. doi:10.1126/science.1071553

    Article  Google Scholar 

  20. Aoudjit F, Vuori K (2001) Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol 152(3):633–643

    Article  Google Scholar 

  21. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    Article  Google Scholar 

  22. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273(5):2926–2930

    Article  Google Scholar 

  23. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953. doi:http://dx.doi.org/10.1016/j.biomaterials.2008.04.023

    Google Scholar 

  24. Kim M, Lee JY, Jones CN, Revzin A, Tae G (2010) Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 31(13):3596–3603. doi:http://dx.doi.org/10.1016/j.biomaterials.2010.01.068

    Google Scholar 

  25. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262

    Article  Google Scholar 

  26. Bryant SJ, Anseth KS (2001) The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22(6):619–626

    Article  Google Scholar 

  27. Sun J, Xiao W, Tang Y, Li K, Fan H (2012) Biomimetic interpenetrating polymer network hydrogels based on methacrylated alginate and collagen for 3D pre-osteoblast spreading and osteogenic differentiation. Soft Matter 8(8):2398–2404

    Article  Google Scholar 

  28. Sakai S, Yamada Y, Zenke T, Kawakami K (2009) Novel chitosan derivative soluble at neutral pH and in situ gellable via peroxidase-catalyzed enzymatic reaction. J Mater Chem 19(2):230–235

    Article  Google Scholar 

  29. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14(34):4312–4314

    Article  Google Scholar 

  30. Sakai S, Hashimoto I, Ogushi Y, Kawakami K (2007) Peroxidase-catalyzed cell encapsulation in subsieve-size capsules of alginate with phenol moieties in water-immiscible fluid dissolving H2O2. Biomacromolecules 8(8):2622–2626

    Article  Google Scholar 

  31. Jin R, Hiemstra C, Zhong Z, Feijen J (2007) Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials 28(18):2791–2800

    Article  Google Scholar 

  32. Sakai S, Kawakami K (2007) Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater 3(4):495–501

    Article  Google Scholar 

  33. Amini AA, Nair LS (2012) Enzymatically cross-linked injectable gelatin gel as osteoblast delivery vehicle. J Bioact Compat Pol. doi:10.1177/0883911512444713

    Google Scholar 

  34. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22(4):233–241

    Article  Google Scholar 

  35. Marie PJ, Miraoui H, Sévère N (2012) FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors 30(2):117–123. doi:10.3109/08977194.2012.656761

    Article  Google Scholar 

  36. Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Sourice S, Biteau K, Hulin P, Forest V, Weiss P, Guicheux J, Lemarchand P (2012) Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS ONE 7(12):e51991. doi:10.1371/journal.pone.0051991

    Article  Google Scholar 

  37. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178

    Article  Google Scholar 

  38. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688. doi:10.1126/science.1063187

    Article  Google Scholar 

  39. Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30(13):2523–2530. doi:10.1016/j.biomaterials.2009.01.010

    Article  Google Scholar 

  40. Zupancich JA, Bates FS, Hillmyer MA (2009) Synthesis and self-assembly of RGD-functionalized PEO-PB amphiphiles. Biomacromolecules 10(6):1554–1563. doi:10.1021/bm900149b

    Article  Google Scholar 

  41. Webber MJ, Tongers J, Renault M-A, Roncalli JG, Losordo DW, Stupp SI (2010) Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 6(1):3–11. doi:http://dx.doi.org/10.1016/j.actbio.2009.07.031

    Google Scholar 

  42. Gong Y, Su K, Lau TT, Zhou R, Wang DA (2010) Microcavitary hydrogel-mediating phase transfer cell culture for cartilage tissue engineering. Tissue Eng Part A 16(12):3611–3622

    Article  Google Scholar 

  43. Chawla K, Yu T-b, Stutts L, Yen M, Guan Z (2012) Modulation of chondrocyte behavior through tailoring functional synthetic saccharide–peptide hydrogels. Biomaterials 33(26):6052–6060. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.04.058

    Google Scholar 

  44. Liao SW, Rawson J, Omori K, Ishiyama K, Mozhdehi D, Oancea AR, Ito T, Guan Z, Mullen Y (2013) Maintaining functional islets through encapsulation in an injectable saccharide–peptide hydrogel. Biomaterials 34(16):3984–3991. doi:http://dx.doi.org/10.1016/j.biomaterials.2013.02.007

    Google Scholar 

  45. Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3(3):034002. doi:10.1088/1748-6041/3/3/034002

    Article  Google Scholar 

  46. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906. doi:10.1016/j.biomaterials.2008.03.031

    Article  Google Scholar 

  47. Yang L, Yuan W, Zhao J, Ai F, Chen X, Zhang Y (2011) A novel approach to prepare uniaxially aligned nanofibers and longitudinally aligned seamless tubes through electrospinning. Macromol Mater Eng 297(7):604–608. doi:10.1002/mame.201100195

    Article  Google Scholar 

  48. Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16(6):918–924. doi:10.1088/0957-4484/16/6/049

    Article  Google Scholar 

  49. Fisher MB, Henning EA, Söegaard N, Esterhai JL, Mauck RL (2013) Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater 9(1):4496–4504. doi:http://dx.doi.org/10.1016/j.actbio.2012.10.018

    Google Scholar 

  50. Browning MB, Dempsey D, Guiza V, Becerra S, Rivera J, Russell B, Höök M, Clubb F, Miller M, Fossum T, Dong JF, Bergeron AL, Hahn M, Cosgriff-Hernandez E (2012) Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater 8(3):1010–1021. doi:10.1016/j.actbio.2011.11.015

    Article  Google Scholar 

  51. Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155(2):193–199. doi:http://dx.doi.org/10.1016/j.jconrel.2011.04.007

  52. Nivison-Smith L, Weiss AS (2012) Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. J Biomed Mater Res A 100(1):155–161. doi:10.1002/jbm.a.33255

    Article  Google Scholar 

  53. Liu H, Li X, Zhou G, Fan H, Fan Y (2011) Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials 32(15):3784–3793. doi:10.1016/j.biomaterials.2011.02.002

    Article  Google Scholar 

  54. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238

    Article  Google Scholar 

  55. McCullen SD, Autefage H, Callanan A, Gentleman E, Stevens MM (2012) Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Eng Part A 18(19–20):2073–2083

    Article  Google Scholar 

  56. Kador KE, Montero RB, Venugopalan P, Hertz J, Zindell AN, Valenzuela DA, Uddin MS, Lavik EB, Muller KJ, Andreopoulos FM, Goldberg JL (2013) Tissue engineering the retinal ganglion cell nerve fiber layer. Biomaterials 34(17):4242–4250. doi:http://dx.doi.org/10.1016/j.biomaterials.2013.02.027

    Google Scholar 

  57. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886. doi:10.1016/s0142-9612(03)00593-3

    Article  Google Scholar 

  58. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906. doi:http://dx.doi.org/10.1016/j.biomaterials.2008.03.031

    Google Scholar 

  59. Anderson DG, Burdick JA, Langer R (2004) Smart biomaterials. Science 305(5692):1923–1924. doi:10.1126/science.1099987

    Article  Google Scholar 

  60. McClure MJ, Sell SA, Simpson DG, Walpoth BH, Bowlin GL (2010) A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: A preliminary study. Acta Biomater 6(7):2422–2433. doi:http://dx.doi.org/10.1016/j.actbio.2009.12.029

    Google Scholar 

  61. Harris LD, Kim B-S, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42(3):396–402. doi:10.1002/(sici)1097-4636(19981205)42:3<396:aid-jbm7>3.0.co;2-e

    Article  Google Scholar 

  62. Ji C, Annabi N, Hosseinkhani M, Sivaloganathan S, Dehghani F (2012) Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomater 8(2):570–578. doi:http://dx.doi.org/10.1016/j.actbio.2011.09.028

    Google Scholar 

  63. Changchun Z, Liang M, Wei L, Donggang Y (2011) Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends. Biofabrication 3(4):045003

    Article  Google Scholar 

  64. Foss C, Merzari E, Migliaresi C, Motta A (2012) Silk Fibroin/Hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 14(1):38–47. doi:10.1021/bm301174x

    Article  Google Scholar 

  65. Stoppato M, Stevens HY, Carletti E, Migliaresi C, Motta A, Guldberg RE (2013) Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds. Biomaterials (2013). doi:http://dx.doi.org/10.1016/j.biomaterials.2013.02.009

  66. Bandyopadhyay B, Shah V, Soram M, Viswanathan C, Ghosh D (2013) In vitro and in vivo evaluation of L-lactide/ε-caprolactone copolymer scaffold to support myoblast growth and differentiation. Biotechnol Progr 29(1):197–205. doi:10.1002/btpr.1665

    Article  Google Scholar 

  67. Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17(8):424–432. doi:http://dx.doi.org/10.1016/j.molmed.2011.03.005

    Google Scholar 

  68. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216

    Article  Google Scholar 

  69. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683. doi:http://dx.doi.org/10.1016/j.biomaterials.2006.02.014

    Google Scholar 

  70. Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21(4):243–248. doi:http://dx.doi.org/10.1016/0305-4179(95)93866-I

  71. Brown JW, Elkins RC, Clarke DR, Tweddell JS, Huddleston CB, Doty JR, Fehrenbacher JW, Takkenberg JJM (2010) Performance of the CryoValve SG human decellularized pulmonary valve in 342 patients relative to the conventional CryoValve at a mean follow-up of four years. J Thorac Cardiov Surg 139(2):339–348. doi:http://dx.doi.org/10.1016/j.jtcvs.2009.04.065

  72. Choi JS, Kim JD, Yoon HS, Cho YW (2013) Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng Part A 19(3–4):329–339

    Article  Google Scholar 

  73. Bannasch H, Stark GB, Knam F, Horch RE, Föhn M (2008) Decellularized dermis in combination with cultivated keratinocytes in a short- and long-term animal experimental investigation. J Eur Acad Dermatol 22(1):41–49. doi:10.1111/j.1468-3083.2007.02326.x

    Google Scholar 

  74. Ma R, Li M, Luo J, Yu H, Sun Y, Cheng S, Cui P (2013) Structural integrity, ECM components and immunogenicity of decellularized laryngeal scaffold with preserved cartilage. Biomaterials 34(7):1790–1798. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.11.026

    Google Scholar 

  75. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933

    Article  Google Scholar 

  76. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541. doi:10.1126/science.1189345

    Article  Google Scholar 

  77. Dahl SL, Koh J, Prabhakar V, Niklason LE (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12(6):659–666

    Google Scholar 

  78. Zhao Y, Zhang S, Zhou J, Wang J, Zhen M, Liu Y, Chen J, Qi Z (2010) The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 31(2):296–307. doi:http://dx.doi.org/10.1016/j.biomaterials.2009.09.049

    Google Scholar 

  79. Yu C, Bianco J, Brown C, Fuetterer L, Watkins JF, Samani A, Flynn LE (2013) Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials 34(13):3290–3302. doi:http://dx.doi.org/10.1016/j.biomaterials.2013.01.056

    Google Scholar 

  80. Wang L, Johnson JA, Chang DW, Zhang Q (2013) Decellularized musculofascial extracellular matrix for tissue engineering. Biomaterials 34(11):2641–2654. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.12.048

    Google Scholar 

  81. Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y (2011) Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 32(29):7042–7052. doi:http://dx.doi.org/10.1016/j.biomaterials.2011.06.005

    Google Scholar 

  82. Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D’Amore A, Nagarkar SP, Velankar SS, Badylak SF (2012) A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33(29):7028–7038. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.06.051

    Google Scholar 

  83. Turner AEB, Yu C, Bianco J, Watkins JF, Flynn LE (2012) The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials 33(18):4490–4499. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.03.026

    Google Scholar 

  84. Duan Y, Liu Z, O’Neill J, Wan L, Freytes D, Vunjak-Novakovic G (2011) Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Trans Res 4(5):605–615. doi:10.1007/s12265-011-9304-0

    Article  Google Scholar 

  85. Schrobback K, Klein TJ, Schuetz M, Upton Z, Leavesley DI, Malda J (2011) Adult human articular chondrocytes in a microcarrier-based culture system: expansion and redifferentiation. J Orthop Res 29(4):539–546. doi:10.1002/jor.21264

    Article  Google Scholar 

  86. Huang S, Deng T, Wang Y, Deng Z, He L, Liu S, Yang J, Jin Y (2008) Multifunctional implantable particles for skin tissue regeneration: Preparation, characterization, in vitro and in vivo studies. Acta Biomater 4(4):1057–1066. doi:http://dx.doi.org/10.1016/j.actbio.2008.02.007

    Google Scholar 

  87. Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X (2012) Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci 66(1):29–36. doi:10.1016/j.jdermsci.2012.02.002

    Article  Google Scholar 

  88. Leong W, Lau TT, Wang D-A (2012) A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system. Acta Biomater (2012). doi:http://dx.doi.org/10.1016/j.actbio.2012.10.047

  89. Su K, Gong Y, Wang C, Wang D-A (2011) A novel shell-structure cell microcarrier (SSCM) for cell transplantation and bone regeneration medicine. Pharm Res 28(6):1431–1441. doi:10.1007/s11095-010-0321-5

    Article  Google Scholar 

  90. Chen W, Tong YW (2012) PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater 8(2):540–548. doi:10.1016/j.actbio.2011.09.026

    Article  Google Scholar 

  91. Kim TK, Yoon JJ, Lee DS, Park TG (2006) Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 27(2):152–159. doi:http://dx.doi.org/10.1016/j.biomaterials.2005.05.081

    Google Scholar 

  92. Lee HJ, Park YH, Koh W-G (2013) Fabrication of nanofiber microarchitectures localized within hydrogel microparticles and their application to protein delivery and cell encapsulation. Adv Funct Mater 23(5):591–597. doi:10.1002/adfm.201201501

    Article  Google Scholar 

  93. Akiyama S, Olden K, Yamada K (1995) Fibronectin and integrins in invasion and metastasis. Cancer Metast Rev 14(3):173–189. doi:10.1007/bf00690290

    Article  Google Scholar 

  94. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309(5963):30–33

    Article  Google Scholar 

  95. Beamish JA, Fu AY, Choi A-j, Haq NA, Kottke-Marchant K, Marchant RE (2009) The influence of RGD-bearing hydrogels on the re-expression of contractile vascular smooth muscle cell phenotype. Biomaterials 30(25):4127–4135. doi:http://dx.doi.org/10.1016/j.biomaterials.2009.04.038

    Google Scholar 

  96. Burkhart DJ, Kalet BT, Coleman MP, Post GC, Koch TH (2004) Doxorubicin-formaldehyde conjugates targeting alphavbeta3 integrin. Mol Cancer Ther 3(12):1593–1604

    Google Scholar 

  97. Patel PR, Kiser RC, Lu YY, Fong E, Ho WC, Tirrell DA, Grubbs RH (2012) Synthesis and cell adhesive properties of linear and cyclic RGD functionalized polynorbornene thin films. Biomacromolecules 13(8):2546–2553. doi:10.1021/bm300795y

    Article  Google Scholar 

  98. Wang C, Gong Y, Lin Y, Shen J, Wang DA (2008) A novel gellan gel-based microcarrier for anchorage-dependent cell delivery. Acta Biomater 4(5):1226–1234

    Article  Google Scholar 

  99. Annabi N, Fathi A, Mithieux SM, Martens P, Weiss AS, Dehghani F (2011) The effect of elastin on chondrocyte adhesion and proliferation on poly (ɛ-caprolactone)/elastin composites. Biomaterials 32(6):1517–1525. doi:http://dx.doi.org/10.1016/j.biomaterials.2010.10.024

  100. Song YL, Li YX, Zheng QX, Wu K, Guo XD, Wu YC, Yin M, Wu Q, Fu XL (2011) Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels. J Biomat Sci-Polym E 22(4–6):475–487. doi:10.1163/092050610x487756

    Article  Google Scholar 

  101. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355. doi:10.1126/science.1093783

    Article  Google Scholar 

  102. Gerberich BG, Bhatia SK (2013) Tissue scaffold surface patterning for clinical applications. Biotechnol J 8(1):73–84. doi:10.1002/biot.201200131

    Article  Google Scholar 

  103. Huang NF, Lai ES, Ribeiro AJS, Pan S, Pruitt BL, Fuller GG, Cooke JP (2013) Spatial patterning of endothelium modulates cell morphology, adhesiveness and transcriptional signature. Biomaterials 34(12):2928–2937. doi:http://dx.doi.org/10.1016/j.biomaterials.2013.01.017

    Google Scholar 

  104. Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, Dolatshahi-Pirouz A, Edalat F, Bae H, Yang Y, Khademhosseini A (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33(35):9009–9018

    Article  Google Scholar 

  105. Liu Y, Zhang L, Li H, Yan S, Yu J, Weng J, Li X (2012) Electrospun fibrous mats on lithographically micropatterned collectors to control cellular behaviors. Langmuir 28(49):17134–17142. doi:10.1021/la303490x

    Article  Google Scholar 

  106. Uttayarat P, Perets A, Li M, Pimton P, Stachelek SJ, Alferiev I, Composto RJ, Levy RJ, Lelkes PI (2010) Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater 6(11):4229–4237. doi:http://dx.doi.org/10.1016/j.actbio.2010.06.008

    Google Scholar 

  107. Tuft BW, Li S, Xu L, Clarke JC, White SP, Guymon BA, Perez KX, Hansen MR, Guymon CA (2013) Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth. Biomaterials 34(1):42–54. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.09.053

    Google Scholar 

  108. Poudel I, Lee JS, Tan L, Lim JY (2013) Micropatterning–retinoic acid co-control of neuronal cell morphology and neurite outgrowth. Acta Biomater 9(1):4592–4598. doi:http://dx.doi.org/10.1016/j.actbio.2012.08.039

    Google Scholar 

  109. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921. doi:http://dx.doi.org/10.1006/jmcc.2001.1367

    Google Scholar 

  110. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20. doi:10.1161/01.RES.0000135902.99383.6f

    Article  Google Scholar 

  111. Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T (2000) Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. J Biomed Mater Res 51(2):216–223. doi:10.1002/(sici)1097-4636(200008)51:2<216:aid-jbm10>3.0.co;2-k

    Article  Google Scholar 

  112. Kushida A, Yamato M, Isoi Y, Kikuchi A, Okano T (2005) A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes. Eur Cell Mater 10:23–30

    Google Scholar 

  113. Kushida A, Yamato M, Kikuchi A, Okano T (2001) Two-dimensional manipulation of differentiated Madin–Darby canine kidney (MDCK) cell sheets: The noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces. J Biomed Mater Res 54(1):37–46. doi:10.1002/1097-4636(200101)54:1<37:aid-jbm5>3.0.co;2-7

    Article  Google Scholar 

  114. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465. doi:http://www.nature.com/nm/journal/v12/n4/suppinfo/nm1391_S1.html

    Google Scholar 

  115. Arisaka Y, Kobayashi J, Yamato M, Akiyama Y, Okano T (2013) Switching of cell growth/detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials 34(17):4214–4222. doi:http://dx.doi.org/10.1016/j.biomaterials.2013.02.056

    Google Scholar 

  116. Kelm JM, Fussenegger M (2010) Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev 62(7–8):753–764. doi:http://dx.doi.org/10.1016/j.addr.2010.02.003

  117. Ito A, Ino K, Kobayashi T, Honda H (2005) The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 26(31):6185–6193. doi:http://dx.doi.org/10.1016/j.biomaterials.2005.03.039

    Google Scholar 

  118. Kito T, Shibata R, Ishii M, Suzuki H, Himeno T, Kataoka Y, Yamamura Y, Yamamoto T, Nishio N, Ito S, Numaguchi Y, Tanigawa T, Yamashita JK, Ouchi N, Honda H, Isobe K, Murohara T (2013) iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Sci Rep 3. doi:http://www.nature.com/srep/2013/130311/srep01418/abs/srep01418.html#supplementary-information

  119. Zahn R, Thomasson E, Guillaume-Gentil O, Vörös J, Zambelli T (2012) Ion-induced cell sheet detachment from standard cell culture surfaces coated with polyelectrolytes. Biomaterials 33(12):3421–3427. doi: http://dx.doi.org/10.1016/j.biomaterials.2012.01.019

    Google Scholar 

  120. Guillaume-Gentil O, Akiyama Y, Schuler M, Tang C, Textor M, Yamato M, Okano T, Vörös J (2008) Polyelectrolyte coatings with a potential for electronic control and cell sheet engineering. Adv Mater 20(3):560–565. doi:10.1002/adma.200700758

    Article  Google Scholar 

  121. Su K, Lau TT, Leong W, Gong Y, Wang D-A (2012) Creating a living hyaline cartilage graft free from non-cartilaginous constituents: an intermediate role of a biomaterial scaffold. Adv Funct Mater 22(5):972–978. doi:10.1002/adfm.201102884

    Article  Google Scholar 

  122. Gomes ME, Azevedo HS, Moreira AR, Ella V, Kellomaki M, Reis RL (2008) Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen M 2(5):243–252. doi:10.1002/term.89

    Article  Google Scholar 

  123. Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ (2010) Electrospun collagen–chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 6(2):372–382. doi:http://dx.doi.org/10.1016/j.actbio.2009.07.024

    Google Scholar 

  124. Rahman MM, Pervez S, Nesa B, Khan MA (2013) Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering. Polym Int 62(1):79–86. doi:10.1002/pi.4299

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by financial support from AcRF Tier 1 Grant RG 36/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-An Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Leong, W., Wang, DA. (2014). Engineering Biomaterials for Anchorage-Dependent and Non-anchorage-Dependent Therapeutic Cell Delivery in Translational Medicine. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics