Plasmonic Nanobubbles for Cancer Theranostics

  • Ekaterina Y. Lukianova-Hleb
  • Dmitri O. Lapotko


Biomedical functions of plasmonic nanoparticles are usually determined by physical properties which are preset during their chemical synthesis. These properties are assumed to stay constant during continuous or pulsed optical excitation of plasmonic nanoparticles. We show that nonstationary excitation with short laser pulse creates entirely new transient photothermal and spectral properties of plasmonic nanoparticles that do not fit into the above stationary paradigm. Our novel nonstationary approach allowed, for example, to shift the spectral peak of standard gold colloids from visible to the near-infrared region, to narrow its width from hundreds to 1–2 nm, and to increase the photothermal efficacy. Replacing chemical engineering of sophisticated nanoparticles with the dynamic tuning of transient properties of standard and clinically proved nanoparticles opens principally new opportunities for nanomedicine including diagnosis, therapy, and theranostics. Furthermore, a nonstationary mechanism allowed to replace the photothermal therapy that cannot provide single cell selectivity and suffers from high optical and nanoparticle doses and their nonspecific uptake, by the cell-specific mechanical treatment that can rapidly and selectively destroy only pathological cells, deliver drugs and genetic cargo and unite diagnosis and treatment in one rapid theranostic procedure.


Laser Pulse Probe Beam Single Laser Pulse Nonspecific Uptake Gold Nanospheres 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Looser KG, Shah JP, Strong EW (1978) The significance of “positive” margins in surgically resected epidermoid carcinomas. Head Neck Surg 1:107–111. doi: 10.1002/hed.2890010203 Google Scholar
  2. 2.
    Vikram B, Strong EW, Shah JP, Spiro R (1984) Failure at the primary site following multimodality treatment in advanced head and neck cancer. Head Neck Surg 6:720–723. doi: 01.1002/hed.2890060303 Google Scholar
  3. 3.
    Yuen PW, Lam KY, Chan AC, Wei WI, Lam LK (1998) Clinico- pathological analysis of local spread of carcinoma of the tongue. Am J Surg 175:242–244. doi: 10.1016/S0002-9610(97)00282-1 Google Scholar
  4. 4.
    Meier JD, Oliver DA, Varvares MA (2005) Surgical margin determination in head and neck oncology: current clinical practice. The results of an International American Head and Neck Society Member Survey. Head Neck 27:952–958. doi: 10.1002/hed.20269 Google Scholar
  5. 5.
  6. 6.
    Seikaly H, Rieger J, Wolfaardt J, Moysa G, Harris J, Jha N (2003) Functional outcomes after primary oropharyngeal cancer resection and reconstruction with the radial forearm free flap. Laryngoscope 113:897–904. doi: 10.1097/00005537-200305000-00023 Google Scholar
  7. 7.
    Taylor RJ, Chepeha JC, Teknos TN, Bradford CR, Sharma PK, Terrell JE, Hogikyan ND, Wolf GT, Chepeha DB (2002) Development and validation of the neck dissection impairment index: a quality of life measure. Arch Otolaryngol Head Neck Surg 128:44–49. doi: 10.1001/archotol.128.1.44 Google Scholar
  8. 8.
    Langendijk JA, Doornaert P, Verdonck-de IMLeeuw, Leemans CR, Aaronson NK, Slotman BJ (2008) Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol 26:3770–3887. doi: 10.1200/JCO.2007.14.6647 Google Scholar
  9. 9.
    Pauloski BR, Rademaker AW, Logemann JA, Lazarus CL, Newman L, Hamner A, MacCracken E, Gaziano J, Stachowiak L (2002) Swallow function and perception of dysphagia in patients with head and neck cancer. Head Neck 24:555–565. doi: 10.1002/hed.10092 Google Scholar
  10. 10.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96. doi: 10.3322/CA.2007.0010 Google Scholar
  11. 11.
    Zackrisson B, Mercke C, Strander H, Wennerberg J, Cavallin-Stahl E (2003) A systemic overview of radiation therapy effects in head and neck cancer. Acta Oncol 42:443–461. doi: 10.1081/02841860310014886 Google Scholar
  12. 12.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA: Cancer J Clin 60:277–300. doi: 10.3322/caac.20073 Google Scholar
  13. 13.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA: A Cancer J Clin 61:69-90.doi:  10.3322/caac.20107
  14. 14.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik Vierte Folge Band 25:377–445. doi: 10.1002/andp.19083300302 MATHGoogle Scholar
  15. 15.
    Faraday M (1857) The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181. doi: 10.1098/rstl.1857.0011 Google Scholar
  16. 16.
    Merchant B (1998) Gold, the noble metal and the paradoxes of its toxicology. Biologicals 26:49–59. doi: 10.1006/biol.1997.0123 Google Scholar
  17. 17.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317. doi: 10.1038/86684 Google Scholar
  18. 18.
    Ambrosch P (2007) The role of laser microsurgery in the treatment of laryngeal cancer. Curr Opin Otolaryngol Head Neck Surg. 15:82–88. doi: 10.1097/MOO.0b013e3280147336 Google Scholar
  19. 19.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, BerlinGoogle Scholar
  20. 20.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley Interscience, New YorkGoogle Scholar
  21. 21.
    Harris N, Ford MJ, Cortie MB (2006) Optimization of plasmonic heating by gold nanospheres and nanoshells. J Chem Phys B 110:10701–10707. doi: 10.1021/jp0606208 Google Scholar
  22. 22.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and PTT properties of gold nanocrystals. Int Rev Phys Chem 19:409–453. doi: 10.1080/01442350050034180 Google Scholar
  23. 23.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779. doi: 10.1039/c1cs15237h Google Scholar
  24. 24.
    Yu Y–Y, Chang S–S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664. doi: 10.1021/jp971656q Google Scholar
  25. 25.
    Dickerson EB, Dreaden EC, Huang X, El-Sayed I, Chu H, Pushpanketh S, McDonald JF, El-Sayed M (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66. doi: 10.1016/j.canlet.2008.04.026 Google Scholar
  26. 26.
    Choi W, Kim J-Y, Kang C, Byeon C, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003. doi: 10.1021/nn103047r Google Scholar
  27. 27.
    Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7:94–104. doi: 10.1021/mp9001415 Google Scholar
  28. 28.
    Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094. doi: 10.1021/nn102722z Google Scholar
  29. 29.
    Khlebtsov BN, Panfilova EV, Terentyuk GS, Maksimova IL, Ivanov AV, Khlebtsov NG (2012) Plasmonic nanopowders for photothermal therapy of tumors. Langmuir 28:8994–9002. doi: 10.1021/la300022k Google Scholar
  30. 30.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247. doi: 10.1016/S0009-2614(98)00277-2 Google Scholar
  31. 31.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934. doi: 10.1021/nl070610y Google Scholar
  32. 32.
    Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li Z-Y, Au L, Zhang H, Kimmey MB, Li X, Xia Y (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477. doi: 10.1021/nl047950t Google Scholar
  33. 33.
    Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6:811–817. doi: 10.1002/smll.200902216 Google Scholar
  34. 34.
    Guerrero-Martínez A, Grzelczak M, Liz-Marzán LM (2012) Molecular thinking for nanoplasmonic design. ACS Nano 6:3655–3662. doi: 10.1021/nn301390s Google Scholar
  35. 35.
    Jana N, Gearheart L, Murphy C (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067. doi: 10.1021/jp0107964 Google Scholar
  36. 36.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi: 10.1021/cm020732l Google Scholar
  37. 37.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1879. doi: 10.1016/j.ccr.2005.01.030 Google Scholar
  38. 38.
    Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal nanoshell. Ann Biomed Eng 34:15–22. doi: 10.1007/s10439-005-9001-8 Google Scholar
  39. 39.
    Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901. doi: 10.1021/ja039734c Google Scholar
  40. 40.
    Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2:2182–2190. doi: 10.1038/nprot.2007.326 Google Scholar
  41. 41.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103. doi: 10.1002/anie.200802248 Google Scholar
  42. 42.
    Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzán LM (2011) Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Opin Colloid & Interface Sci 16:118–127. doi: 10.1016/j.cocis.2010.12.007 Google Scholar
  43. 43.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Rev 38:1759–1782. doi: 10.1039/b806051g Google Scholar
  44. 44.
    Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527. doi: 10.1126/science.6836297 Google Scholar
  45. 45.
    Govorov A, Richardson H (2007) Generating heat with metal nanoparticles. Nano Today 2:30–38. doi: 10.1016/S1748-0132(07)70017-8 Google Scholar
  46. 46.
    Keblinski P, Cahill D, Bodapati A, Sullivan CR, Taton TA (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys 100:054308. doi: 10.1063/1.2335783 Google Scholar
  47. 47.
    Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron 38:504–529. doi: 10.1070/QE2008v038n06ABEH013829 Google Scholar
  48. 48.
    Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser & Photon Rev 2:136–159. doi: 10.1002/lpor.200810003 Google Scholar
  49. 49.
    Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710–1720. doi: 10.1021/ar800028j Google Scholar
  50. 50.
    Myroshnychenko V, Rodríguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán L-M, García de FJAbajo (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805. doi: 10.1039/B711486A Google Scholar
  51. 51.
    Quinten M (2011) Optical properties of nanoparticle systems: Mie and beyond. Wiley-VCH Verlag, GmbH & Co. KGaA, LondonGoogle Scholar
  52. 52.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic PTT therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228. doi: 10.1007/s10103-007-0470-x Google Scholar
  53. 53.
    Khlebtsov BN, Zharov VP, Melnikov AG, Tuchin VV, Khlebtsov NG (2006) Optical amplification of PTT therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179. doi: 10.1088/0957-4484/17/20/022 Google Scholar
  54. 54.
    Arbouet A, Christofilos D, Del Fatti N, Vallée F, Huntzinger JR, Arnaud L, Billaud P, Broyer M (2004) Direct measurement of the single-metal-cluster optical absorption. Phys Rev Lett 93:127401. doi: 10.1103/PhysRevLett.93.127401 Google Scholar
  55. 55.
    Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett 5:515–518. doi: 10.1021/nl050062t Google Scholar
  56. 56.
    Muskens OL, Del Fatti N, Vallée F, Huntzinger JR, Billaud P, Broyer M (2006) Single metal nanoparticle absorption spectroscopy and optical characterization. Appl Phys Lett 88:0634109. doi: 10.1063/1.2172143 Google Scholar
  57. 57.
    Del Fatti N, Christofilos D, Vallée F (2008) Optical response of a single gold nanoparticles. Gold Bull 41:147–158. doi: 10.1007/BF03216592 Google Scholar
  58. 58.
    Khlebtsov NG, Melnikov AG, Dykman LA, Bogatyrev VA (2004) Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates. In: Videen G, Yatskiv YS, Mishchenko MI (eds) Photopolarimetry in remote sensing. Kluwer Academic Publishers, Dordrecht, pp 265–308Google Scholar
  59. 59.
    Shalaev VM, Poliakov EY, Markel VA (1996) Small-particle composites. II. Nonlinear optical properties. Phys Rev B 53:2437–2449. doi: 10.1103/PhysRevB.53.2437 Google Scholar
  60. 60.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650. doi: 10.1021/ja993825l Google Scholar
  61. 61.
    Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (1999) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103:1165–1170. doi: 10.1021/jp983141k Google Scholar
  62. 62.
    Inasava S, Sugiyama M, Yamaguchi Y (2005) Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. J Phys Chem B 109:3104–3111. doi: 10.1021/jp045167j Google Scholar
  63. 63.
    Hashimoto S, Werner D, Uwada T (2012) Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J Photochem Photobiol 13:28–54. doi: 10.1016/j.jphotochemrev.2012.01.001 Google Scholar
  64. 64.
    Habenicht A, Olapinski M, Burmeister F, Leiderer P, Boneberg J (2005) Jumping nanodroplets. Science 309:2043–2045. doi: 10.1126/science.1116505 Google Scholar
  65. 65.
    Petrova H, Hu M, Hartland GV (2007) Photothermal properties of gold nanoparticles. Z Phys Chem 221:361–376. doi: 10.1524/zpch.2007.221.3.361 Google Scholar
  66. 66.
    Kurita H, Takami A, Koda S (1998) Size reduction of gold particles in aqueous solution by pulsed laser irradiation. Appl Phys Lett 72:789–791. doi: 10.1063/1.120894 Google Scholar
  67. 67.
    Fujiwara H, Yanagida S, Kamat PV (1999) Visible laser induced fusion and fragmentation of thionicotinamide-capped gold nanoparticles. J Phys Chem B. 103:2589–2591. doi: 10.1021/jp984429c Google Scholar
  68. 68.
    Aguirre CM, Moran CE, Young JF, Halas NJ (2004) Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination. J Phys Chem B 108:7040–7045. doi: 10.1021/jp036222b Google Scholar
  69. 69.
    Akchurin G, Khlebtsov B, Akchurin G, Tuchin V, Zharov V, Khlebtsov N (2008) Gold nanoshell photomodification under single nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology 19:015701. doi: 10.1088/0957-4484/19/01/015701 Google Scholar
  70. 70.
    Zsigmondy R (1898) Üeber wassrige Lösungen metallischen Goldes. Ann Chem 301:29–54. doi: 10.1002/jlac.18983010104 Google Scholar
  71. 71.
    Raleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98. doi: 10.1080/14786440808635681 Google Scholar
  72. 72.
    Plesset MS (1949) The dynamics of cavitation bubbles. Trans ASME: J Appl Mech 16:277–282. doi: 10.1080/14786440808635681 Google Scholar
  73. 73.
    Askaryan GA, Prokhorov AM, Chanturiya GF, Shapiro GP (1963) The effects of a laser beam in a liquid. Sov Phys JEPT 17:1463Google Scholar
  74. 74.
    Barnes PA, Rieckhoff KE (1968) Laser induced underwater sparks. Appl Phys Lett 13:282. doi: 10.1063/1.1652611 Google Scholar
  75. 75.
    Neumann J, Brinkmann R (2007) Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation. J Appl Phys 101:114701. doi: 10.1063/1.2740348 Google Scholar
  76. 76.
    Roider J, El Hifnawi ES, Birngruber R (1998) Bubble formation as primary interaction mechanism in retinal laser exposure with 200-ns laser pulses. Lasers Surg Med 22:240–248. doi:  10.1002/(SICI)1096-9101(1998)22:4<240::AID-LSM9>3.0.CO;2-P Google Scholar
  77. 77.
    Lapotko D, Lukianova E, Shnip S, Zheltov G, Potapnev M, Savitsky V, Klimovich O, Oraevsky A (2005) Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy. Proc SPIE 5697:82. doi: 10.1117/12.596372 Google Scholar
  78. 78.
    Lukianova-Hleb EY, Hu Y, Latterini L, Tarpani L, Lee S, Drezek R, Hafner JH, Lapotko DO (2010) Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4:2109–2123. doi: 10.1021/nn1000222 Google Scholar
  79. 79.
    Hleb EY, Lapotko DO (2009) Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. Nano Lett 9:2160–2166. doi: 10.1021/nl9007425 Google Scholar
  80. 80.
    Lapotko DO (2009) Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt Express 17:2538–2556. doi: 10.1364/OE.17.002538 Google Scholar
  81. 81.
    Kling CL, Hammitt FG (1972) A photographic study of spark-induced cavitation bubble collapse. Trans ASME D: J Basic Eng 94:825–832. doi: 10.1115/1.3425571 Google Scholar
  82. 82.
    Lauterborn W (1972) High-speed photography of laser-induced breakdown in liquids. Appl Phys Lett 21:27. doi: 10.1063/1.1654204 Google Scholar
  83. 83.
    Ohl CD, Philipp A, Lauterborn W (1995) Cavitation bubble collapse studied at 20 million frames per second. Annr Phys 507:26–34. doi: 10.1002/andp.19955070104 Google Scholar
  84. 84.
    Yavas O, Leiderer P, Park HK, Grigoropoulos CP, Poon CC, Leung WP, Do N, Tam AC (1993) Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating. Phys Rev Lett 70:1830–1833. doi: 10.1103/PhysRevLett.70.1830 Google Scholar
  85. 85.
    Vogel A, Lauterborn W (1988) Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J Acoust Soc Am 84:719–731. doi: 10.1121/1.396852 Google Scholar
  86. 86.
    Marston PL (1979) Critical angle scattering by a bubble: physical-optics approximation and observation. J Opt Soc Am 69:1205–1211. doi: 10.1364/JOSA.69.001205 Google Scholar
  87. 87.
    Stroud JS, Marston PL (1993) Optical detection of transient bubble oscillations associated with the underwater noise of rain. J Acoust Soc Am 94:2788–2792. doi: 10.1121/1.407362 Google Scholar
  88. 88.
    Asaki TJ, Thiessen DB, Marston PL (1995) Effect of an insoluble surfactant on capillary oscillations of bubbles in water: observation of a maximum in the damping. Phys Rev Lett 75:2686–2689. doi:  10.1103/PhysRevLett.75.2686. (E) 75;4336 (1995).  10.1103/PhysRevLett.75.4336 Google Scholar
  89. 89.
    Fujimoto JG, Lin WZ, Ippen EP, Puliafito CA, Steinert RF (1985) Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation. Invest Ophthalmol Vis Sci 26:1771–1777Google Scholar
  90. 90.
    Gaitan DF, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stale cavitation bubble. J Acoust Soc Am 91:3166–3183. doi: 10.1121/1.402855 Google Scholar
  91. 91.
    Barber BP, Putterman SJ (1992) Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. Phys Rev Lett 69:3839–3842. doi: 10.1103/PhysRevLett.69.3839 Google Scholar
  92. 92.
    Plech A, Kotaidis V, Lorenc M, Boneberg J (2006) Femtosecond laser near-field ablation from gold nanoparticles. Nature Phys 2:44–47. doi: 10.1038/nphys191 Google Scholar
  93. 93.
    Lin CP, Kelly MW (1998) Cavitation and acoustic emission around laser-heated microparticles. Appl Phys Lett 72:2800. doi: 10.1063/1.121462 Google Scholar
  94. 94.
    Neumann J, Brinkmann R (2008) Self-limited growth of laser-induced vapor bubbles around single microabsorbers. Appl Phys Lett 93:033901. doi: 10.1063/1.2957030 Google Scholar
  95. 95.
    Brinkmann R, Hüttmann G, Rögener J, Roider J, Birngruber R, Lin CP (2000) Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Lasers Surg Med 27:451–464. doi: 10.1002/1096-9101(2000)27:5<451:AID-LSM1006>3.0.CO;2-1 Google Scholar
  96. 96.
    Chen H, Diebold G (1995) Chemical generation of acoustic waves: a giant photoacoustic effect. Science 270:963–966. doi: 10.1126/science.270.5238.963 Google Scholar
  97. 97.
    Lapotko D, Kuchinsky G (1995) Photothermal microscopy for cell imaging and diagnostics. Proc SPIE 2390:89–100. doi: 10.1117/12.205988 Google Scholar
  98. 98.
    Vogel A, Linz N, Freidank S, Paltauf G (2008) Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. Phys Rev Lett 100:038102. doi: 10.1103/PhysRevLett.100.038102 Google Scholar
  99. 99.
    Vogel A, Noack J, Hüttmann G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047. doi: 10.107/s00340-005-2036-6 Google Scholar
  100. 100.
    Pitsillides CM, Joe EK, Wie X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032. doi: 10.1016/S0006-3495(03)75128-5 Google Scholar
  101. 101.
    Kotaidis V, Dahmen C, von Plessen G, Springer F, Plech A (2006) Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J Chem Phys 124:184702. doi: 10.1063/1.2187476 Google Scholar
  102. 102.
    Kotaidis V, Plech A (2005) Cavitation dynamics on the nanoscale. Appl Phys Lett 87:213102. doi: 10.1063/1.2132086 Google Scholar
  103. 103.
    Lukianova-Hleb EY, Ren X, Zasadzinski JA, Wu X, Lapotko DO (2012) Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells. Adv Mater 24:3831–3837. doi: 10.1002/adma.201103550 Google Scholar
  104. 104.
    Wagner DS, Delk NA, Lukianova-Hleb EY, Hafner JH, Farach-Carson MC, Lapotko DO (2010) The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 31:7567–7574. doi: 10.1016/j.biomaterials.2010.06.031 Google Scholar
  105. 105.
    Lukianova-Hleb EY, Ren X, Townley D, Wu X, Kupferman M, Lapotko D (2012) Plasmonic nanobubbles rapidly detect and destroy drug-resistant tumors. Theranostics 2:976–987. doi: 10.7150/thno.5116 Google Scholar
  106. 106.
    Lukianova-Hleb E, Wagner D, Brenner M, Lapotko D (2012) Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles. Biomaterials 33:5441–5450. doi: 10.1016/j.biomaterials.2012.03.077 Google Scholar
  107. 107.
    Lapotko D, Lukianova E, Оraevsky A (2006) Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Lasers Surg Med 38:631–642. doi: 10.1002/lsm.20359 Google Scholar
  108. 108.
    Lapotko D, Shnip A, Lukianova E (2003) Photothermal detection of laser-induced damage in single intact cells. Lasers Surg Med 33:320–329. doi: 10.1002/lsm.10285 Google Scholar
  109. 109.
    Jain KK (2010) Advances in the field of nanooncology. BMC Med 8:83. doi: 10.1186/1741-7015-8-83 Google Scholar
  110. 110.
    O’Neill BE, Rapoport N (2011) Phase-shift, stimuli-responsive drug carriers for targeted delivery. Ther Deliv 2:1165–1187. doi: 10.4155/tde.11.81 Google Scholar
  111. 111.
    Ashokkumar M (2011) The characterization of acoustic cavitation bubbles—An overview. Ultrason Sonochem 18:864–872. doi: 10.1016/j.ultsonch.2010.11.016 Google Scholar
  112. 112.
    Lapotko D, Lukianova K (2005) Laser-induced micro-bubbles in cells. Int J Heat Mass Transfer 48:227–234. doi: 10.1016/j.ijheatmasstransfer.2004.08.012 Google Scholar
  113. 113.
    Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O (2007) Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason Sonochem 14:484–491. doi: 10.1016/j.ultsonch.2006.09.017 Google Scholar
  114. 114.
    Kurz T, Kröninger D, Geisler R, Lauterborn W (2006) Optic cavitation in an ultrasonic field. Phys Rev E: Stat, Nonlin, Soft Matter Phys 74:066307. doi: 10.1103/PhysRevE.74.066307 Google Scholar
  115. 115.
    Krasovitski B, Kislev H, Kimmel E (2007) Modeling photothermal and acoustical induced microbubble generation and growth. Ultrasonics 47:90–101. doi: 10.1016/j.ultras.2007.08.004 Google Scholar
  116. 116.
    Lukianova-Hleb EY, Lapotko DO (2012) Experimental techniques for imaging and measuring transient vapor nanobubbles. Appl Phys Lett 101:264102. doi: 10.1063/1.4772958 Google Scholar
  117. 117.
    Boulais E, Lachaine R, Meunier M (2012) Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation. Nano Lett 12:4763–4769. doi: 10.1021/nl302200w Google Scholar
  118. 118.
    Zharov V (2011) Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nat Photonics 5:110–116. doi: 10.1038/nphoton.2010.280 Google Scholar
  119. 119.
    Lukianova-Hleb EY, Sassaroli E, Jones A, Lapotko D (2012) Transient photothermal spectra of plasmonic nanobubbles. Langmuir 28:4858–4866. doi: 10.1021/la205132x Google Scholar
  120. 120.
    Siems A, Weber SAL, Boneberg J, Plech A (2011) Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New J Phys 13:043018. doi: 10.1088/1367-2630/13/4/043018 Google Scholar
  121. 121.
    Lukianova-Hleb E, Volkov A, Wu X, Lapotko D (2012) Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation. Adv Materials 25:772–776. doi: 0.1002/adma.201203609 Google Scholar
  122. 122.
    Demtroder W (2008) Laser Spectroscopy: basic concepts and instrumentation. Springer, BerlinGoogle Scholar
  123. 123.
    Orrit M, Bernard J, Personov RI (1993) High-resolution spectroscopy of organic molecules in solids: from fluorescence line narrowing and hole burning to single molecule spectroscopy. J Phys Chem 97:10256–10268. doi: 10.1021/j100142a003 Google Scholar
  124. 124.
    Lukianova-Hleb EY, Ren X, Constantinou P, Danysh B, Shenefelt D, Carson D, Farach-Carson MC, Kulchitsky VA, Wu X, Wagner DS, Lapotko DO (2012) Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems. PLoS ONE 7:e34537. doi: 10.1371/journal.pone.0034537 Google Scholar
  125. 125.
    Adamson AWG, Gast AP (1997) Physical chemistry of surfaces. Wiley, London, pp 784Google Scholar
  126. 126.
    Dean JA (ed) (1999) Lange’s handbook of chemistry. McGraw-Hill, New YorkGoogle Scholar
  127. 127.
    de Gennes PGF, Brochard-Wyart F, Quere D (2004) Capillary and wetting phenomena—drops, bubbles, pearls, waves. Springer, Berlin, pp 291Google Scholar
  128. 128.
    Khlebtsov NG, Dykman LA, Krasnov Ya M, Melnikov AG (2000) Extinction of light by colloidal clusters of gold and silver particles formed in slow and fast aggregation regimes. Colloid J 62:765–779Google Scholar
  129. 129.
    Hleb E, Hafner JH, Myers JN, Hanna EY, Rostro BC, Zhdanok SA, Lapotko DO (2008) LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles. Nanomedicine (Lond) 3:647–667. doi: 10.2217/17435889.3.5.647 Google Scholar
  130. 130.
    Lapotko DO, Lukianova-Hleb EY, Oraevsky AA (2007) Clusterization of nanoparticles during their interaction with living cells. Nanomedicine (Lond) 2:241–253. doi: 10.2217/17435889.2.2.241 Google Scholar
  131. 131.
    Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550. doi: 10.1021/nl070363y Google Scholar
  132. 132.
    Salmaso S, Caliceti P, Amendola V, Meneghetti M, Magnusson JP, Pasparakis G, Alexander C (2009) Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. J Mater Chem 19:1608–1615. doi: 10.1039/B816603J Google Scholar
  133. 133.
    Mandal D, Maran A, Yaszemski MJ, Bolander ME, Sarkar G (2009) Cellular uptake of gold nanoparticles directly cross-linked with carrier peptides by osteosarcoma cells. J Mater Sci Mater Med 20:347–350. doi: 10.1007/s10856-008-3588-x Google Scholar
  134. 134.
    Haigler HT, McKanna JA, Cohen S (1979) Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol 81:382–395. doi: 10.1083/jcb.81.2.382 Google Scholar
  135. 135.
    Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21:10644–10654. doi: 10.1021/la0513712 Google Scholar
  136. 136.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668. doi: 10.1021/nl052396o Google Scholar
  137. 137.
    Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63:3154–3161Google Scholar
  138. 138.
    Herbst RS, Langer CJ (2002) Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol 29:27–36Google Scholar
  139. 139.
    Yokoyama T, Tam J, Kuroda S, Scott AW, Aaron J, Larson T et al (2011) EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLosOne 6:e25507. doi: 10.1371/journal.pone.0025507 Google Scholar
  140. 140.
    Welch AJ, van Gemert MJC (eds) (2011) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, BerlinGoogle Scholar
  141. 141.
    Zhang HF, Maslov K, Stoica G, Wang LV (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24:848–851. doi: 10.1038/nbt1220 Google Scholar
  142. 142.
    Conjusteau A, Ermilov S, Lapotko D, Liao H, Hafner J, Eghtedari M, Motamedi M, Kotov N, Oraevsky A (2006) Metallic nanoparticles as optoacoustic contrast agents for medical imaging. Proc SPIE 6086:155–165. Doi:  10.1117/12.658065 Google Scholar
  143. 143.
    Laser Institute of America (2007) American national standard for safe use of lasers (ANSI Z136.1–2007)Google Scholar
  144. 144.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316. doi: 10.1158/1078-0432.CCR-07-1441 Google Scholar
  145. 145.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as An emerging platform for cancer therapy. Nat Nanotechnol 2:751–760. doi: 10.1038/nnano.2007.387 Google Scholar
  146. 146.
    Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS (2010) Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 5:465–472. doi: 10.1038/nnano.2010.58 Google Scholar
  147. 147.
    Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71. doi: 10.1016/j.jconrel.2009.12.006 Google Scholar
  148. 148.
    Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA, Tirrell M, Reich NO (2009) Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano 3:2007–2015. doi: 10.1021/nn900469q Google Scholar
  149. 149.
    Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159:393–402. doi: 10.1016/j.jconrel.2012.01.009 Google Scholar
  150. 150.
    Woo HN, Chung HK, Ju EJ, Jung J, Kang HW, Lee SW et al (2012) Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int J Nanomedicine 7:2197–2208. doi: 10.2147/IJN.S29480 Google Scholar
  151. 151.
    Koning GA, Eggermont AM, Lindner LH, Ten Hagen TL (2010) Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 27:1750–1754. doi: 10.1007/s11095-010-0154-2 Google Scholar
  152. 152.
    Agarwal A, Mackey MA, El-Sayed MA, Bellamkonda RV (2011) Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano 5:4919–4926. doi: 10.1021/nn201010q Google Scholar
  153. 153.
    Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, Bhatia SN, Sailor MJ (2010) Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 22:880–885. doi: 10.1002/adma.200902895 Google Scholar
  154. 154.
    Stathopoulos GP, Antoniou D, Dimitroulis J, Michalopoulou P, Bastas A, Marosis K et al (2010) Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol 21:2227–2232. doi: 10.1093/annonc/mdq234 Google Scholar
  155. 155.
    Zhang F, Zhu L, Liu G, Hida N, Lu G, Eden HS, Niu G, Chen X (2011) Multimodality imaging of tumor response to Doxil. Theranostics 1:302–309. doi;  10.7150/thno/v01p0302 Google Scholar
  156. 156.
    Kost J, Leong K, Langer R (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A 86:7663–7666. doi: 10.1073/pnas.86.20.7663 Google Scholar
  157. 157.
    McCarthy MJ, Soong DS, Edelman ER (1984) Control of drug release from polymer matrices impregnated with magnetic beads—a proposed mechanism and model for enhanced release. J Control Release 1:143–147. doi: 10.1016/0168-3659(84)90006-3 Google Scholar
  158. 158.
    Husseini GA, Pitt WG (2008) The use of ultrasound and micelles in cancer treatment. J Nanosci Nanotechnol 8:2205–2215. doi: 10.1166/jnn.2008.225 Google Scholar
  159. 159.
    Rapoport N (2012) Ultrasound-mediated micellar drug delivery. Int J Hyperthermia 28:374–385. doi: 10.3109/02656736.2012.665567 Google Scholar
  160. 160.
    Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR et al (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci U S A 109:12426–12431. doi: 10.1073/pnas.1121174109 Google Scholar
  161. 161.
    Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361. doi: 10.1021/ja304180y Google Scholar
  162. 162.
    Huang HC, Yang Y, Nanda A, Koria P, Rege K (2011) Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine 6:459–473. doi: 10.2217/nnm.10.133 Google Scholar
  163. 163.
    Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliver Rev 62:339–345. doi: 10.1016/j.addr.2009.11.006 Google Scholar
  164. 164.
    Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2:125–132. doi: 10.2217/17435889.2.1.125 Google Scholar
  165. 165.
    Gilstrap K, Hu X, Lu X, He X (2011) Nanotechnology for energy-based cancer therapies. Am J Cancer Res 1:508–520Google Scholar
  166. 166.
    Gobin AM, O’Neal DP, Watkins DM, Halas NJ, Drezek RA, West JL (2005) Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers Surg Med 37:123–129. doi: 10.1002/lsm.20206 Google Scholar
  167. 167.
    Gormley AJ, Larson N, Sadekar S, Robinson R, Ray A, Ghandehari H (2012) Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today 7:158–167. doi: 10.1016/j.nantod.2012.04.002 Google Scholar
  168. 168.
    Záruba K, Králová J, Rezanka P, Poucková P, Veverková L, Král V (2010) Modified porphyrin-brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Org Biomol Chem 8:3202–3206. doi: 10.1039/c002823a Google Scholar
  169. 169.
    Cheng Y, Meyers JD, Broome A-M, Kenney ME, Basilion JP, Burda C (2011) Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc 133:2583–2591. doi: 10.1021/ja108846h Google Scholar
  170. 170.
    Prentice P, Cuschierp A, Dholakia K, Prausnitz M, Campbell P (2005) Membrane disruption by optically controlled microbubble cavitation. Nat Phys 1:107–110. doi: 10.1038/nphys148 Google Scholar
  171. 171.
    Liu HL, Chen WS, Chen JS, Shih TC, Chen YY, Lin WL (2006) Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure. Ultrasound Med Biol 32:759–767. doi: 10.1016/j.ultrasmedbio.2006.01.010 Google Scholar
  172. 172.
    Arita Y, Torres-Mapa ML, Lee WM, Cizmar T, Campbell P, Gunn-Moore FJ, Dholakia K (2011) Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles. Appl Phys Lett 98:093702. doi: 10.1063/1.3554415 Google Scholar
  173. 173.
    Lukianova-Hleb E, Belyanin A, Kashinath S, Wu X, Lapotko D (2012) Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 33:1821–1826. doi;  10.1016/j.biomaterials.2011.11.015 Google Scholar
  174. 174.
    Lukianova-Hleb E, Samaniego A, Wen J, Metelitsa L, Chang C–C, Lapotko D (2011) Selective gene transfection of individual cells in vitro with plasmonic nanobubbles. J Control Release 152:286–293. doi: 10.1016/j.jconrel.2011.02.006 Google Scholar
  175. 175.
    Lukianova-Hleb EY, Ren X, Zasadzinski JA, Wu X, Lapotko D (2012) Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells. Adv Mater 24:3831–3837. doi: 10.1002/adma.201103550 Google Scholar
  176. 176.
    Anderson L, Hansen E, Lukianova-Hleb EY, Hafner JH, Lapotko DO (2010) Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J Control Release 144:151–158. doi: 10.1016/j.jconrel.2010.02.012 Google Scholar
  177. 177.
    Lukianova-Hleb EY, Mutonga M, Lapotko DO (2012) Cell-specific multifunctional processing of heterogeneous cell systems in a single laser pulse treatment. ACS Nano 6:10973–10981. doi: 10.1021/nn3045243 Google Scholar
  178. 178.
    Lukianova-Hleb E, Oginsky AO, Samaniego AO, Shenefelt DL, Wagner DS, Hafner JH, Farach-Carson MC, Lapotko DO (2011) Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics 1:3–17. doi: 10.7150/thno/v01p0003 Google Scholar
  179. 179.
    Lapotko D, Lukianova E, Potapnev M, Aleinikova O, Oraevsky A (2006) Method of laser activated nano-thermolysis for elimination of tumor cells. Cancer Lett 239:36–45. doi: 10.1016/j.canlet.2005.07.031 Google Scholar
  180. 180.
    Lukianova-Hleb EY, Koneva II, Oginsky AO, La Francesca S, Lapotko DO (2011) Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles. J Surg Res 166:e3–e13. doi: 10.1016/j.jss.2010.10.039 Google Scholar
  181. 181.
    Lukianova-Hleb E, Hanna EY, Hafner JH, Lapotko DO (2010) Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 21:85102. doi: 10.1088/0957-4484/21/8/085102 Google Scholar
  182. 182.
    Mueller H, Kassack MU, Wiese M (2004) Comparison of the usefulness of the MTT, ATP, and Calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9:506–515. doi: 10.1177/1087057104265386 Google Scholar
  183. 183.
    Doxil: Product Information Book (2011) Centocor Ortho Biotech Products, L.P. USA 3/2011Google Scholar
  184. 184.
    McDannold NJ, Vykhodtseva NI, Hynynen K (2006) Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 241:95–106. doi: 10.1148/radiol.2411051170 Google Scholar
  185. 185.
    Kennedy JE (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5:321–327. doi: 10.1038/nrc1591 Google Scholar
  186. 186.
    Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276. doi: 10.1016/j.jconrel.2009.05.026 Google Scholar
  187. 187.
    Ferrara KW (2008) Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 60:1097–1102. doi: 10.1021/la2011259 Google Scholar
  188. 188.
    Wang CH, Huang YF, Yeh CK (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27:6971–6976. doi: 10.1021/la2011259 Google Scholar
  189. 189.
    Yin T, Wang P, Zheng R, Zheng B, Cheng D, Zhang X, Shuai X (2012) Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomedicine 7:895–904. doi: 10.2147/IJN.S28830 Google Scholar
  190. 190.
    Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D (2012) New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomedicine 7:3309–3318. doi: 10.2147/IJN.S30912 Google Scholar
  191. 191.
    Cochran MC, Eisenbrey J, Ouma RO, Soulen M, Wheatley MA (2011) Doxorubicin and Paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414:161–170. doi: 10.1016/j.ijpharm.2011.05.030 Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ekaterina Y. Lukianova-Hleb
    • 1
  • Dmitri O. Lapotko
    • 1
  1. 1.Department of Biochemistry and Cell Biology, Department of Physics and AstronomyRice UniversityHoustonUSA

Personalised recommendations