Skip to main content

Engineering Miniature Imaging Instruments

  • Chapter
  • First Online:
Book cover Engineering in Translational Medicine

Abstract

Miniature instruments are being developed with millimeter dimensions for in vivo imaging with performance approaching that of conventional laboratory microscopes used in basic science. This reduction in size allows for in vivo imaging to visualize pathology in hollow organs to guide biopsy, identify surgical margins, and localize disease. Recently, significant advances have been made in endomicroscopy technology, including in optical designs, light sources, optical fibers, and miniature scanners, allowing for improved resolution, greater tissue penetration, and multi-spectral imaging. Key performance goals that challenge our engineering capabilities include the need for large displacements, high scan speeds, linear motions, and mechanical stability in a scaled-down instrument package. Tiny scanning and actuation mechanisms must be reduced in size for in vivo imaging and performed with high speeds to ultimately achieve fast two- and three-dimensional beam scanning, representing a significant challenge for this field. Here, we present several representative miniature imaging technologies that are currently under development. We have included novel methods for cross-sectional imaging with deep tissue penetration, wide area surveillance, and high-resolution microscopy. These emerging technologies represent only a small fraction of the exciting new developments that promise to generate new knowledge about human biology and diseases in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maitland K, Wang TD (2013) Endoscopy. In: Moore J, Maitland D (eds) Biomedical Technology and Devices Handbook, 2nd edn. Taylor & Francis, New York. doi:10.1201/9780203491492.ch11

  2. Piyawattanametha W, Wang TD (2011) In vivo microendoscopy. In: Tunnell J (ed) In vivo clinical imaging and diagnosis. McGraw Hill Professional, New York, pp 45–76. ISBN: 9780071626842

    Google Scholar 

  3. Domke JF, Rhee CH, Liu Z et al (2011) Amplifying transmission and compact suspension for a low-profile, large-displacement piezoelectric actuator. J Micromech Microeng 21(6):067004-1–8. doi:10.1088/0960-1317/21/6/067004

    Google Scholar 

  4. Piyawattanametha W, Patterson PR, Hah D et al (2005) Surface- and bulk- micromachined two-dimensional scanner driven by angular vertical comb actuators. J Microelectromech Syst 14(6):1329–1338. doi:10.1109/JMEMS.2005.859073

    Article  Google Scholar 

  5. Aguirre AD, Paul RH, Chen Yu et al (2007) Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging. Opt Express 15(5):2445–2453. doi:10.1364/OE.15.002445

    Article  Google Scholar 

  6. Pan Y, Xie H, Fedder GK (2001) Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt Lett 26(24):1966–1968. doi:10.1364/OL.26.001966

    Article  Google Scholar 

  7. Sun J, Guo S, Wu L et al (2010) 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. Opt Express 18(12):12065–12075. doi:10.1364/OE.18.012065

    Article  Google Scholar 

  8. Samuelson SR, Wu L, Sun J et al (2012) A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography. J Microelectromech Syst 21(6):1291–1302. doi:10.1109/JMEMS.2012.2209404

    Article  Google Scholar 

  9. Kim KH, Park BH, Maguluri GN et al (2007) Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography. Opt Express 15(26):18130–18140. doi:10.1364/OE.15.018130

    Article  Google Scholar 

  10. Mansoor H, Zeng H, Tai IT et al (2013) A handheld electromagnetically actuated fiber optic raster scanner for reflectance confocal imaging of biological tissues. IEEE Trans Biomed Eng 60(5):1431–1438. doi:10.1109/TBME.2012.2236326

    Article  Google Scholar 

  11. Mansoor H, Zeng H, Chen K et al (2011) Vertical optical sectioning using a magnetically driven confocal microscanner aimed for in vivo clinical imaging. Opt Express 19(25):25161–25172. doi:10.1364/OE.19.025161

    Article  Google Scholar 

  12. Qiu Z, Pulskamp JS, Lin X et al (2010) Large displacement vertical translational actuator based on piezoelectric thin films. J Micromech Microeng 20(7):1–10. doi:10.1088/0960-1317/20/7/075016

    Google Scholar 

  13. Lee CM, Engelbrecht CJ, Soper TD et al (2010) Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J Biophotonics 5–6:385–407. doi:10.1002/jbio.200900087

    Article  Google Scholar 

  14. Miller SJ, Lee CM, Joshi BP et al (2012) Targeted detection of murine colonic dysplasia in vivo with flexible multi-spectral scanning fiber endoscopy. J Biomed Optics 17(2):1–11. doi:10.1117/1.JBO.17.2.021103

    Google Scholar 

  15. Joshi BP, Miller SJ, Lee CM et al (2012) Multispectral endoscopic imaging of colorectal dysplasia in vivo. Gastroenterology 143(6):135–137. doi:10.1053/j.gastro.2012.08.053

    Article  Google Scholar 

  16. Yun SH, Tearney GJ, Vakoc BJ et al (2006) Comprehensive volumetric optical microscopy in vivo. Nat Med 12(12):1429–1433. doi:10.1038/nm1450

    Article  Google Scholar 

  17. Evans JA, Poneros JM, Bouma BE et al (2006) Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin Gastroenterol Hepatol 4(1):38–43. doi:10.1016/S1542-3565(05)00746-9

    Article  Google Scholar 

  18. Gora MJ, Sauk JS, Carruth RW et al (2013) Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med 19(2):238–240. doi:10.1038/nm.3052

    Article  Google Scholar 

  19. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462. doi:10.1126/science.1216210

    Google Scholar 

  20. Yang JM, Chen R, Favazza C et al (2012) A 2.5 mm diameter probe for photoacoustic and ultrasonic endoscopy. Opt Express 20(21):23944–23953. doi:10.1364/OE.20.023944

    Article  Google Scholar 

  21. Yang JM, Favazza C, Chen R et al (2012) Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med 18(8):1297–1302. doi:10.1038/nm.2823

    Article  Google Scholar 

  22. Wang TD, Friedland S, Sahbaie P et al (2007) Functional imaging of colonic mucosa with a fibered confocal microscope for real time in vivo pathology. Clin Gastroenterol Hepatol 5(11):1300–1405. doi:10.1016/j.cgh.2007.07.013

    Article  Google Scholar 

  23. Sturm MB, Joshi BP, Lu S et al (2013) Targeted endoscopic imaging of Barrett’s neoplasia with specific fluorescent-labeled peptide: first in-humans results. Sci Trans Med 5(184):184ra61-1-0. doi:10.1126/scitranslmed.3004733

    Google Scholar 

  24. Hsiung P, Hardy J, Friedland S (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14(4):454–458. doi:10.1038/nm1692

    Article  Google Scholar 

  25. Wang TD, Mandella MJ, Contag CH et al (2003) Dual axes confocal microscope for high resolution in vivo imaging. Opt Lett 28(6):414–416. doi:10.1364/OL.28.000414

    Article  Google Scholar 

  26. Liu JTC, Mandella MJ, Crawford JM et al (2006) A dual-axes confocal reflectance microscope for distinguishing colonic neoplasia. J Biomed Opt 11(5):054019-1–10. doi:10.1117/1.2363363

    Google Scholar 

  27. Qiu Z, Liu Z, Duan X et al (2013) Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope. Biomed Opt Express 4(2):322–330. doi:10.1364/BOE.4.000322

    Article  Google Scholar 

  28. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76. doi:10.1126/science.2321027

    Article  Google Scholar 

  29. Wu Y, Leng Y, Xi J et al (2009) Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. Opt Express 17(10):7907–7915. doi:10.1364/OE.17.007907

    Article  Google Scholar 

  30. Myaing MT, Ye JY, Norris TB et al (2003) Enhanced two-photon biosensing with double-clad photonic crystal fibers. Opt Lett 28(14):1224–1226. doi:10.1364/OL.28.001224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Qiu, Z., Wang, T.D. (2014). Engineering Miniature Imaging Instruments. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_30

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics