Skip to main content

Engineering the Next-Generation PET Detectors

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Positron emission tomography (PET) is a functional imaging modality where image contrast is generated by exploiting the biochemical activity of the lesion of interest. The technique is widely used in the clinic, mainly for staging of cancerous lesions and monitoring their response to therapy. This chapter discusses recent research and engineering efforts aimed at improving images obtained with clinical PET cameras. We want to provide the reader with an overview of novel techniques that potentially will make it into clinical PET systems. After introducing PET and the current state-of-the-art commercially available clinical systems, we will discuss characteristics of current and novel scintillating materials and introduce improvements in spatial resolution through depth-of-interaction measurements and novel optical photon extraction methods. Next will be a discussion of various photodetectors: we present photomultiplier tubes, the current clinical workhorse in PET, as well as silicon-based solid-state photodetectors: avalanche photodiodes (APDs) and silicon photomultipliers (Si-PMs). We also briefly discuss semiconductor detectors that do not require photodetectors. Improved time resolution and its consequences for time-of-flight (TOF) imaging is the next topic of focus. Accurate TOF information significantly improves image SNR. Furthermore, we present the challenges involved in combining PET with MR systems and improvements in image reconstruction speed using GPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Better resolution only leads to better contrast if the size of structures are on the order of the resolution.

References

  1. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781–799

    Article  Google Scholar 

  2. Shibuya K, Yoshida E, Nishikido F, Suzuki T, Tsuda T, Inadama N, Yamaya T, Murayama H (2007) Annihilation photon acollinearity in PET: volunteer and phantom FDG studies. Phys Med Biol 52:5249–5261

    Article  Google Scholar 

  3. Delbeke D, Schöder H, Martin WH, Wahl RL (2009) Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 39:308–340

    Article  Google Scholar 

  4. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

    Article  Google Scholar 

  5. IMV Medical Information Division (2012) 2012 PET Imaging market summary report. Technical Report

    Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  7. Valenta I, Schindler TH (2012) Rb PET/CT: entering a new area of myocardial perfusion imaging? Eur J Nucl Med Mol Imaging 39:1231–1232

    Article  Google Scholar 

  8. Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, Mintun MA, and Alzheimer’s Disease Neuroimaging Initiative (2013) Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med 54:70–77

    Google Scholar 

  9. Chen K, Chen X (2011) Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol 38:70–86

    Article  Google Scholar 

  10. National Electrical Manufacturers Association (2013) NEMA NU 2-2012

    Google Scholar 

  11. Siemens Medical (2006) TruePoint PET/CT technology. pp 1–16

    Google Scholar 

  12. Philips Healthcare (2011) Time-of-Flight technology within your reach. pp 1–4

    Google Scholar 

  13. Imaging Technology News (2013), PET/CT system comparison charts. http://www.itnonline.com/comparison-charts

  14. Payne SA, Moses WW, Sheets S, Ahle L, Cherepy NJ et al (2011) Nonproportionality of scintillator detectors: theory and experiment. II. IEEE Trans. Nucl. Sci 58:3392–3402

    Article  Google Scholar 

  15. Wiener R, Kaul M, Surti S (2010) Signal analysis for improved timing resolution with scintillation detectors for TOF PET imaging. IEEE NSS-MIC Conf Rec. pp 1991–1995

    Google Scholar 

  16. Yang K, Melcher CL, Koschan M, Zhuravleva M (2011) Effect of Ca co-doping on the luminescence centers in LSO: Ce single crystals. IEEE Trans Nucl Sci 58:1394–1399

    Google Scholar 

  17. Yanagida T, Yoshikawa A, Yokota Y, Kamada K, Usuki Y, Yamamoto S, Miyake M, Baba M et al (2010) Development of Pr: LuAG scintillator array and assembly for positron emission mammography. IEEE Trans Nucl Sci 57:1492–1495

    Article  Google Scholar 

  18. Chewpraditkul W, Swiderski L, Moszynski M, Szczesniak T, Syntfeld-Kazuch A, Wanarak C, Limsuwan P (2009) Scintillation properties of LuAG:Ce, YAG:Ce and LYSO:Ce crystals for gamma-ray detection. IEEE Trans Nucl Sci 56:3800–3805

    Article  Google Scholar 

  19. Conti M, Eriksson L, Rothfuss H, Melcher CL (2009) Comparison of fast scintillators with TOF PET potential. IEEE Trans Nucl Sci 56:926–933

    Article  Google Scholar 

  20. Kamada K, Yanagida T, Tsutsumi K, Usuki Y, Sato M, Ogino H, Novoselov A, Yoshikawa A et al (2009) Scintillation properties of 2-inch-diameter rm Pr: Lu2Al5O12(LuAG) single crystal. IEEE Trans Nucl Sci 56:570–573

    Google Scholar 

  21. Balcerzyk M, Moszynski M, Kapusta M, Wolski D, Pawelke J, Melcher CL (2000) YSO, LSO, CSO and LGSO. A study of energy resolution and nonproportionality. Nucl Sci 47:1319–1323

    Article  Google Scholar 

  22. Swiderski L, Moszynski M, Nassalski A, Syntfeld-Kazuch A, Szczesniak T, Kamada K, Tsutsumi K, Usuki Y et al (2009) Scintillation properties of praseodymium doped LuAG scintillator compared to cerium doped LuAG, LSO and LaBr. IEEE Trans Nucl Sci 56:2499–2505

    Article  Google Scholar 

  23. Balcerzyk M, Galazka Z, Kapusta M, Syntfeld A, Lefaucheur JL (2004) Perspectives for high resolution and high light output LuAP:Ce crystals. IEEE NSS-MIC Conf Rec 2:986–992

    Google Scholar 

  24. Auffray E, Abler D, Brunner S, Frisch B, Knapitsch A, Lecoq P, Mavromanolakis G, Poppe O et al (2009) LuAG material for dual readout calorimetry at future high energy physics accelerators. IEEE NSS-MIC Conf Rec, pp 2245–2249

    Google Scholar 

  25. van Loef EV, Higgins WM, Glodo J, Churilov AV, Shah KS (2008) Crystal growth and characterization of rare earth iodides for scintillation detection. J Cryst Growth 310:2090–2093

    Article  Google Scholar 

  26. Ito M, Hong SJ, Lee JS (2011) Positron emission tomography (PET) detectors with depth-of-interaction (DOI) capability. Biomed Eng Lett 1:70–81

    Article  Google Scholar 

  27. Costa E, Massaro E, Piro L (1986) A BGO-CsI(Tl) phoswich: a new detector for X- and γ-ray astronomy. Nucl Instr Meth A 243:572–577

    Google Scholar 

  28. Mosset J-B, Devroede O, Krieguer M, Rey M, Vieira JM, Jung JH, Kuntner C, Streun M et al (2006) Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator. IEEE Trans Nucl Sci 53:25–29

    Article  Google Scholar 

  29. Jung JH, Choi Y, Chung YH, Devroede O, Krieguer M, Bruyndonckx P, Tavernier S (2007) Optimization of LSO/LuYAP phoswich detector for small animal PET. Nucl Instr Meth A 571:669–675

    Article  Google Scholar 

  30. Vaquero J, Sanchez J, Lage E (2011) Design of DOl PET detector modules using phoswich and SiPMs: first results. IEEE NSS-MIC Conf Rec. pp 3311–3313

    Google Scholar 

  31. Fontaine R, Bélanger F, Viscogliosi N (2009) The hardware and signal processing architecture of LabPET™, a small animal APD-based digital PET scanner. Nucl Sci 56:3–9

    Article  Google Scholar 

  32. Du H, Yang Y, Glodo J, Wu Y, Shah K, Cherry SR (2009) Continuous depth-of-interaction encoding using phosphor-coated scintillators. Phys Med Biol 54:1757–1771

    Article  Google Scholar 

  33. Roncali E, Phipps J, Marcu L (2012) Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors. Phys Med Biol 57:6571–6585

    Article  Google Scholar 

  34. Liu H, Omura T, Watanabe M, Yamashita T (2001) Development of a depth of interaction detector for γ-rays. Nucl Instr Meth A 459:182–190

    Article  Google Scholar 

  35. Zhang N, Thompson CJ, Togane D, Cayouette F, Nguyen KQ (2002) Anode position and last dynode timing circuits for dual-layer BGO scintillator with PS-PMT based modular PET detectors. IEEE Trans Nucl Sci 49:2203–2207

    Article  Google Scholar 

  36. Ito M, Lee JS, Kwon SI, Lee GS, Hong B, Lee KS, Sim K-S, Lee SJ et al (2010) A four-layer DOI detector with a relative offset for use in an animal PET system. IEEE Trans Nucl Sci 57:976–981

    Article  Google Scholar 

  37. Tsuda T, Murayama H, Kitamura K, Yamaya T, Yoshida E, Omura T, Kawai H, Inadama N et al (2004) A four-Layer depth of interaction detector block for small animal PET. IEEE Trans Nucl Sci 51:2537–2542

    Article  Google Scholar 

  38. Inadama N, Murayama H, Hamamoto M, Tsuda T, Ono Y, Yamaya T, Yoshida E, Shibuya K et al (2006) 8-Layer DOI encoding of 3-dimensional crystal array. IEEE Trans Nucl Sci 53:2523–2528

    Article  Google Scholar 

  39. Shimizu K, Ohmura T, Watanabe M, Uchida H, Yamashita T (1988) Development of 3-D detector system for positron CT. IEEE Trans Nucl Sci 35:717–720

    Google Scholar 

  40. Abreu M, Aguiar J, Almeida F, Almeida P, Bento P, Carrico B, Ferreira M, Ferreira N et al (2006) Design and evaluation of the Clear-PEM scanner for positron emission mammography. IEEE Trans Nucl Sci 53:71–77

    Article  Google Scholar 

  41. James SS, Yang Y, Wu Y, Farrell R, Dokhale P, Shah KS, Cherry SR (2009) Experimental characterization and system simulations of depth of interaction PET detectors using 0.5 mm and 0.7 mm LSO arrays. Phys Med Biol 54:4605–4619

    Article  Google Scholar 

  42. Beltrame P, Bolle E, Braem A, Casella C, Chesi E, Clinthorne N, Cochran E, De Leo R et al (2011) Construction and tests of demonstrator modules for a 3-D axial PET system for brain or small animal imaging. Nucl Instr Meth A 636:S226–S230

    Article  Google Scholar 

  43. Bolle E, Rissi M, Bjaalie JG, Buskenes JI, Dorholt O, Røhne O, Skretting A, Stapnes S (2011) COMPET—high resolution and high sensitivity PET scanner with novel readout concept: setup and simulations. Nucl Instr Meth A 648:S93–S95

    Article  Google Scholar 

  44. Yamaya T, Mitsuhashi T, Matsumoto T, Inadama N, Nishikido F, Yoshida E, Murayama H, Kawai H et al (2011) A SiPM-based isotropic-3D PET detector X’tal cube with a three-dimensional array of 1 mm3 crystals. Phys Med Biol 56:6793–6807

    Article  Google Scholar 

  45. Yoshida E, Tashima H, Inadama N, Nishikido F, Moriya T, Omura T, Watanabe M, Murayama H et al (2012) Intrinsic spatial resolution evaluation of the X’tal cube PET detector based on a 3D crystal block segmented by laser processing. Radiol Phys Technol 6:21–27

    Article  Google Scholar 

  46. Levin CS (2002) Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE Trans Nucl Sci 49:2236–2243

    Article  Google Scholar 

  47. Vandenbroucke A, Foudray AMK, Olcott PD, Levin CS (2010) Performance characterization of a new high resolution PET scintillation detector. Phys Med Biol 55:5895–5911

    Article  Google Scholar 

  48. Zhang J, Foudray A, Olcott P, Farrell R, Shah K, Levin C (2007) Performance characterization of a novel thin position-sensitive avalanche photodiode for 1 mm resolution positron emission tomography. IEEE Trans Nucl Sci 54:415–421

    Google Scholar 

  49. Vandenbroucke A, Lau FWY, Reynolds PD, Levin CS (2011) Measuring 511 keV photon interaction locations in three dimensional position sensitive scintillation detectors. IEEE NSS-MIC Conf Rec 2011:1–4

    Google Scholar 

  50. Lau FWY, Fang C, Reynolds PD, Olcott PD, Vandenbroucke A, Spanoudaki VC, Olutade F, Horowitz MA et al (2008) 1 mm3 resolution breast-dedicated PET system. IEEE NSS-MIC Conf Rec, pp 5619–5622

    Google Scholar 

  51. Ling T, Lewellen TK, Miyaoka RS (2007) Depth of interaction decoding of a continuous crystal detector module. Phys Med Biol 52:2213–2228

    Article  Google Scholar 

  52. Bruyndonckx P, Lematre C, Schaart D, Maas M (2007) Towards a continuous crystal APD-based PET detector design. Nucl Instr Meth NIM A 571:182–186

    Article  Google Scholar 

  53. van der Laan DJJ, Maas MC, Bruyndonckx P, Schaart DR (2012) Limits on the spatial resolution of monolithic scintillators read out by APD arrays. Phys Med Biol 57:6479–6496

    Article  Google Scholar 

  54. Ross S, Stearns C (2010) SharpIR, white paper. GE Healthcare, pp 1–8

    Google Scholar 

  55. Siemens Medical (2007) TruePoint PET. pp 1–10

    Google Scholar 

  56. Cayouette F, Laurendeau D, Moisan C (2003) DETECT2000: an improved Monte-Carlo simulator for the computer aided design of photon sensing devices. In: Lessard RA, Lampropoulos GA, Schinn GW (eds) Proceedings of SPIE, pp 69–76, SPIE

    Google Scholar 

  57. Janecek M, Moses WW (2010) Simulating scintillator light collection using measured optical reflectance. IEEE Trans Nucl Sci 57:964–970

    Article  Google Scholar 

  58. Agostinelli S, Allison J, Society AC, Apostolakis J, Araujo H, Arce P, Asai M, Axen D et al (2003) Geant4—a simulation toolkit. Nucl Instr Meth A 506:250–303

    Article  Google Scholar 

  59. Gentit F (2002) Litrani: a general purpose Monte Carlo program simulating light propagation in isotropic or anisotropic media. Nucl Instr Meth A A486:35–39

    Article  Google Scholar 

  60. Kronberger M, Auffray E, Lecoq P (2010) Improving light extraction from heavy inorganic scintillators by photonic crystals. IEEE Trans Nucl Sci 57:2475–2482

    Article  Google Scholar 

  61. Flyckt SO, Marmonier C (2002) Photomultiplier tubes—principles and applications. Photonis, 2 edn

    Google Scholar 

  62. Iams H, Salzberg B (1935) The secondary emission phototube. Proc. IRE 23:55–64

    Article  Google Scholar 

  63. Iijima T (2011) Status and perspectives of vacuum-based photon detectors. Nucl Instr Meth A 639:137–143

    Article  Google Scholar 

  64. Hamamatsu (2013) Electron tube division. http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/photomultiplier-tubes.php

  65. Anger HO (1958) Scintillation camera. Rev Sci Inst 29:27–33

    Article  Google Scholar 

  66. Pani R, Pellegrini R, Cinti MN, Mattioli M, Trotta C, Montani L, Iurlaro G, Trotta G et al (2004) Recent advances and future perspectives of position sensitive PMT. Nucl Instr Meth B 213:197–205

    Article  Google Scholar 

  67. Olcott P, Talcott JA, Levin CS, Habte F (2005) Compact readout electronics for position sensitive photomultiplier tubes. IEEE Trans Nucl Sci 52:21–27

    Article  Google Scholar 

  68. Pani R, Cinti MN, Pellegrini R, Betti M, Bennati P, Trotta G, Del Guerra A (2005) Reduced parallel anode readout for 256 ch flat panel PMT. IEEE NSS-MIC Conf Rec 5:2954–2958

    Google Scholar 

  69. Kyushima H, Shimoi H, Atsumi A, Ito M, Oba K, Yoshizawa YNSSCRI (2000) The development of flat panel PMT. IEEE NSS-MIC Conf. Rec. 7:3–7

    Google Scholar 

  70. Luo W, Anashkin E, Matthews CG (2008) First test results of a commercially available clinical PET scanner using the NEMA NU4-2008 small animal PET standards. IEEE NSS-MIC Conf Rec, pp 4718–4723

    Google Scholar 

  71. Gu Z, Taschereau R, Vu NT, Wang H, Prout DL, Silverman RW, Stout DB, Phelps ME et al (2011) Design and initial performance of PETbox4, a high sensitivity preclinical imaging tomograph. IEEE NSS-MIC Conf Rec, 2328–2331

    Google Scholar 

  72. Godinez F, Chaudhari AJ, Yang Y, Farrell R, Badawi RD (2012) Characterization of a high-resolution hybrid DOI detector for a dedicated breast PET/CT scanner. Phys Med Biol 57:3435–3449

    Article  Google Scholar 

  73. Wolff P (1954) Theory of electron multiplication in silicon and germanium. Phys Rev 95:1415–1420

    Article  Google Scholar 

  74. Chynoweth AG (1960) Uniform silicon p–n junctions. II. Ionization rates for electrons. J Appl Phys 31:1161–1165

    Article  Google Scholar 

  75. Baraff GA (1962) Distribution functions and ionization rates for hot electrons in semiconductors. Phys Rev 128:2507–2517

    Article  MATH  Google Scholar 

  76. Huth G, Trice J, McKinney R (1964) Internal pulse amplification in silicon pn junction radiation detection junctions. Rev Sci Inst 35:1220–1222

    Article  Google Scholar 

  77. McIntyre R (1966) Multiplication noise in uniform avalanche diodes. IEEE Trans Electr Dev 13:164–168

    Article  Google Scholar 

  78. Petrillo G, McIntyre R, Lecomte R, Lamoureux G, Schmitt D (1984) Scintillation detection with large-area reach-through avalanche photodiodes. Nucl. Sci. 31:417–423

    Article  Google Scholar 

  79. Lecomte R, Schmitt D, Lightstone A, McIntyre R (1985) Performance characteristics of BGO-silicon avalanche photodiode detectors for PET. IEEE Trans Nucl Sci 32:482–486

    Article  Google Scholar 

  80. McIntyre R, Webb P, Dautet H (1996) A short-wavelength selective reach-through avalanche photodiode. IEEE Trans Nucl Sci 43:1341–1346

    Article  Google Scholar 

  81. Lecomte R, Pepin C, Rouleau D, Saoudi A, Andreaco M, Casey M, Nutt R, Dautet H et al (2002) Investigation of GSO, LSO and YSO scintillators using reverse avalanche photodiodes. Nucl Sci 45:478–482

    Article  Google Scholar 

  82. Huth G, Bergeson H, Trice J (1963) Stable, high field silicon pn junction radiation detectors. Rev Sci Inst 34:1283–1285

    Article  Google Scholar 

  83. Locker R, Huth G (1966) A new ionizing radiation detection concept which employs semiconductor avalanche amplification and the tunnel diode element. Appl Phys Lett 9:227–230

    Article  Google Scholar 

  84. Farrell R, Olschner F, Frederick E, McConchie L, Vanderpuye K, Squillante M, Entine G (1990) Large area silicon avalanche photodiodes for scintillation detectors. Nucl Instr Meth A 288:137–139

    Article  Google Scholar 

  85. Moszyski M, Szawlowski M, Kapusta M, Balceryk M (2002) Large area avalanche photodiodes in scintillation and X-rays detection. Nucl Instr Meth A 485:504–521

    Article  Google Scholar 

  86. Farrell R, Shah K, Vanderpuye K, Grazioso R, Myers R, Entine G (2000) APD arrays and large-area APDs via a new planar process. Nucl Instr Meth A 442:171–178

    Article  Google Scholar 

  87. Pepin CM, Dautet H, Bergeron M, Cadorette J, Beaudoin J-F, Jacques-Bedard X, Couture M, Lecomte R (2010) New UV-enhanced, ultra-low noise silicon avalanche photodiode for radiation detection and medical imaging. IEEE NSS-MIC Conf Rec, pp 1740–1746

    Google Scholar 

  88. Redus R, Farrell R (1996) Gain and noise in very high-gain avalanche photodiodes: theory and experiment. Proc. SPIE 2859:288–297

    Article  Google Scholar 

  89. McElroy D, Pimpl W, Pichler B, Rafecas M, Schüler T, Ziegler SI (2005) Characterization and readout of MADPET-II detector modules: validation of a unique design concept for high resolution small animal PET. IEEE Trans Nucl Sci 52:199–204

    Article  Google Scholar 

  90. Moses WW, Derenzo SE, Budinger TF (1994) PET detector modules based on novel detector technologies. Nucl Instr Meth A 353:189–194

    Article  Google Scholar 

  91. Levin CS, Foudray A, Olcott P, Habte F (2004) Investigation of position sensitive avalanche photodiodes for a new high-resolution PET detector design. IEEE Trans Nucl Sci 51:805–810

    Google Scholar 

  92. Lightstone AW, McIntyre RJ, Lecomte R, Schmitt D (1986) A bismuth germanate-avalanche photodiode module designed for use in high resolution positron emission tomography. IEEE Trans Nucl Sci 33:456–459

    Article  Google Scholar 

  93. Lecomte R, Cadorette J, Rodrigue S, Lapointe D, Rouleau D, Bentourkia M, Yao R, Msaki P (1996) Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 43:1952–1957

    Article  Google Scholar 

  94. Fontaine R, Bélanger F, Cadorette J, Leroux JD, Martin JP, Michaud JB, Pratte J-F, Robert S et al (2005) Architecture of a dual-modality, high-resolution, fully digital positron emission tomography/computed tomography (PET/CT) scanner for small animal imaging. IEEE Trans Nucl Sci 52:691–696

    Article  Google Scholar 

  95. Bergeron M, Thibaudeau C, Cadorette J, Pepin CM, Tetrault MA, Davies M, Dautet H, Deschamps P et al (2011) LabPET II, an APD-based PET detector module with counting CT imaging capability. IEEE NSS-MIC Conf Rec, pp 3543–3547

    Google Scholar 

  96. Catana C, Wu Y, Judenhofer MS, Qi J, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976

    Google Scholar 

  97. Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung W-I, Nutt RE, Cherry SR, Claussen CD et al (2007) Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244:639–642

    Article  Google Scholar 

  98. CMS Collaboration (2010) Performance and operation of the CMS electromagnetic calorimeter. JINST 5:T03010–T03010

    Google Scholar 

  99. Spanoudaki VC, McElroy D, Torres-Espallardo I, Ziegler SI (2008) Effect of temperature on the performance of proportional APD-based modules for gamma ray detection in positron emission tomography. Nucl Sci 55:469–480

    Article  Google Scholar 

  100. Vandenbroucke A, McLaughlin TJ, Levin CS (2012) Influence of temperature and bias voltage on the performance of a high resolution PET detector built with position sensitive avalanche photodiodes. JINST 7:P08001–P08001

    Google Scholar 

  101. Cadorette J, Rodrigue S, Lecomte R (1993) Tuning of avalanche photodiode PET camera. IEEE Trans Nucl Sci 40:1062–1066

    Article  Google Scholar 

  102. Shah K, Farrell R, Grazioso R, Harmon ES, Karplus E (2002) Position-sensitive avalanche photodiodes for gamma-ray imaging. Nucl Sci 49:1687–1692

    Article  Google Scholar 

  103. Vandenbroucke A, Levin CS (2008) Study of scintillation crystal array parameters for an advanced PET scanner dedicated to breast cancer imaging. IEEE NSS-MIC Conf Rec, pp 4914–4919

    Google Scholar 

  104. Lau FWY, Vandenbroucke A, Reynolds PD, Olcott PD, Horowitz MA, Levin C (2010) Analog signal multiplexing for PSAPD-based PET detectors: simulation and experimental validation. Phys Med Biol 55:7149

    Article  Google Scholar 

  105. Renker D (2006) Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Instr Meth A 567:48–56

    Article  Google Scholar 

  106. Spanoudaki VC, Levin CS (2010) Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors 10:10484–10505

    Article  Google Scholar 

  107. Roncali E, Cherry SR (2011) Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng 39:1358–1377

    Article  Google Scholar 

  108. Spanoudaki VC, Levin CS (2011) Scintillation induced response in passively-quenched Si-based single photon counting avalanche diode arrays. Opt Express 19:1665–1679

    Article  Google Scholar 

  109. Britvitch I, Renker D (2006) Measurements of the recovery time of Geiger-mode avalanche photodiodes. Nucl Instr Meth A 567:260–263

    Article  Google Scholar 

  110. Oldham W, Samuelson R (1972) Triggering phenomena in avalanche diodes. IEEE Trans Electr Dev 19:1056–1060

    Article  Google Scholar 

  111. McIntyre R (1973) On the avalanche initiation probability of avalanche diodes above the breakdown voltage. IEEE Trans Electr Dev 20:637–641

    Article  Google Scholar 

  112. Mars P (1972) Temperature dependence of avalanche breakdown voltage temperature dependence of avalanche breakdown voltage in p–n junctions. Int J Electron 32:23–37

    Article  Google Scholar 

  113. Mazzillo M, Abbisso S, Condorelli G, Sanfilippo D, Valvo G, Carbone B, Piana A, Fallica G et al (2011) Enhanced blue-light sensitivity P on N silicon photomultipliers. IEEE NSS-MIC Conf Rec, pp N12–1

    Google Scholar 

  114. Brown RGW, Jones R, Rarity JG, Ridley KD (1987) Characterization of silicon avalanche photodiodes for photon correlation measurements 2: active quenching. Appl Opt 26:2383

    Article  Google Scholar 

  115. Cova S, Ghioni M, Lacaita A, Samori C, Zappa F (1996) Avalanche photodiodes and quenching circuits for single-photon detection. Appl Opt 35:1956–1976

    Article  Google Scholar 

  116. Ramilli M, Allevi A, Nardo L, Bondani M, Caccia M (2012) Silicon photomultipliers: characterization and applications. Photodetector (Sanka Gateva Edt., InTech, Rijeka, Croatia), pp 77–100

    Google Scholar 

  117. Chynoweth A, McKay K (1956) Photon emission from avalanche breakdown in silicon. Phys Rev 102:369–376

    Article  Google Scholar 

  118. Lacaita AL, Zappa F, Bigliardi S, Manfredi M (1993) On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices. IEEE Trans Electr Dev 40:577–582

    Article  Google Scholar 

  119. Buzhan P, Dolgoshein B, Ilyin A, Kaplin V, Klemin S, Mirzoyan R, Popova E, Teshima M (2009) The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes. Nucl Instr Meth A 610:131–134

    Article  Google Scholar 

  120. Frach T, Prescher G, Degenhardt C (2009) The digital silicon photomultiplier—principle of operation and intrinsic detector performance. IEEE NSS-MIC Conf Rec

    Google Scholar 

  121. Frach T, Prescher G, Degenhardt C, Zwaans B (2010) The digital silicon photomultiplier—system architecture and performance evaluation. IEEE NSS-MIC Conf Rec, pp 1959–1965

    Google Scholar 

  122. Ninković J, Andriček L, Liemann G, Lutz G, Moser H-G, Richter R, Schopper F (2009) SiMPl—novel high QE photosensor. Nucl Instr Meth A 610:142–144

    Google Scholar 

  123. Jendrysik C, Andriček L, Liemann G, Moser H-G, Ninković J, Richter R, Schopper F (2013) Characterization of the first prototypes of silicon photomultipliers with bulk-integrated quench resistor fabricated at MPI semiconductor laboratory. Nucl Instr Meth A 718:262–265

    Google Scholar 

  124. Berube B-L, Rheaume V-P, Corbeil-Therrien A, Boisvert A, Carini G, Charlebois S, Fontaine R, Pratte J-F (2012) Development of a single photon avalanche diode (SPAD) array in high voltage CMOS 0.8 um dedicated to a 3D integrated circuit (3DIC). IEEE NSS-MIC Conf Rec, pp 1835–1839

    Google Scholar 

  125. McClish M, Dokhale P, Christian J, Johnson E, Stapels C, Robertson R, Shah KS (2010) Characterization of CMOS position sensitive solid-state photomultipliers. Nucl Instr Meth A 624:492–497

    Article  Google Scholar 

  126. McClish M, Dokhale P, Christian J (2011) Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector. Nucl Instr Meth A 652:264–267

    Article  Google Scholar 

  127. Fischer P, Piemonte C (2013) Interpolating silicon photomultipliers. Nucl Instr Meth A 718:320–322

    Google Scholar 

  128. Olcott P, Chinn G, Levin CS (2011) Compressed sensing for the multiplexing of PET detectors. IEEE NSS-MIC Conf Rec, pp 3224–3226

    Google Scholar 

  129. Chinn G, Olcott PD, Levin CS (2010) Improving SNR with a maximum likelihood compressed sensing decoder for multiplexed PET detectors. IEEE NSS-MIC Conf Rec, pp 3353–3356

    Google Scholar 

  130. Chinn G, Olcott PD, Levin CS (2012) Improved compressed sensing multiplexing PET readout. IEEE NSS-MIC Conf Rec, pp 2472–2474

    Google Scholar 

  131. Hong J, Bellm EC, Grindlay JE, Narita T (2003) Cathode depth sensing in CZT detectors. arXiv preprint astro-ph/0310475

    Google Scholar 

  132. Gu Y, Matteson J, Skelton R, Deal A, Stephan E, Duttweiler F, Gasaway T, Levin C (2011) Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys Med Biol 56:1563

    Article  Google Scholar 

  133. Morimoto Y, Ueno Y, Kojima S, Takeuchi W, Ishitsu T, Matsuzaki K, Umegaki K, Kubo N et al (2010) Development of a prototype 3D PET scanner using semiconductor detectors and depth of interaction information. Mol Imaging Integr Med Ther Drug Dev, pp 30–41, Springer

    Google Scholar 

  134. Mitchell G, Sinha S, Stickel JR, Bowen S, Cirignano L, Dokhale P, Kim H, Shah KS et al (2008) CdTe strip detector characterization for high resolution small animal PET. IEEE Trans Nucl Sci 55:870–876

    Article  Google Scholar 

  135. Vaska P, Bolotnikov A, Carini G, Camarda G, Pratte J-F, Dilmanian FA, Park SJ, James RB (2005) Studies of CZT for PET Applications. IEEE NSS-MIC Conf Rec 5:2799–2802

    Google Scholar 

  136. Pratx G, Levin CS (2009) Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors. Phys Med Biol 54:5073

    Article  Google Scholar 

  137. Surti S, Karp JS (2008) Experimental evaluation of a simple lesion detection task with time-of-flight PET. Phys Med Biol 54:373–384

    Article  Google Scholar 

  138. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G (2008) Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 49:462–470

    Article  Google Scholar 

  139. Lecoq P (2012) New approaches to improve timing resolution in scintillators. IEEE Trans Nucl Sci 59:2313–2318

    Article  Google Scholar 

  140. Lynch FJ (1966) Improved timing with NaI(Tl). IEEE Trans Nucl Sci 13:140–147

    Article  Google Scholar 

  141. Powolny F (2009) Characterization of time resolved photodetector systems for positron emission tomography. Ph.D. thesis, Université de Neuchâtel

    Google Scholar 

  142. Schaart DR, Seifert S, Vinke R (2010) LaBr3:Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys Med Biol 55:N179–N189

    Article  Google Scholar 

  143. Daube-Witherspoon ME, Surti S, Perkins A, Kyba CCM, Wiener R, Werner ME, Kulp R, Karp JS (2009) The imaging performance of a LaBr 3-based PET scanner. Phys Med Biol 55:45–64

    Article  Google Scholar 

  144. Spanoudaki VC, Levin CS (2010) Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation. Phys Med Biol 56:735–756

    Article  Google Scholar 

  145. Derenzo SE, Weber MJ, Moses WW, Dujardin C (2000) Measurements of the intrinsic rise times of common inorganic scintillators. IEEE Trans Nucl Sci 47:860–864

    Article  Google Scholar 

  146. Seifert S, Steenbergen J, van Dam H, Schaart DR (2012) Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters. JINST 7:P09004

    Google Scholar 

  147. Shao Y (2007) A new timing model for calculating the intrinsic timing resolution of a scintillator detector. Phys Med Biol 52:1103

    Article  Google Scholar 

  148. Lecoq P, Auffray E, Brunner S, Hillemanns H, Jarron P, Knapitsch A, Meyer T, Powolny F (2010) Factors influencing time resolution of scintillators and ways to improve them. IEEE Trans Nucl Sci 57:2411–2416

    Google Scholar 

  149. Moses WW, Derenzo SE (1999) Prospects for time-of-flight PET using LSO scintillator. IEEE Trans Nucl Sci 46:474–478

    Article  Google Scholar 

  150. Seifert S, van Dam H, Huizenga J, Vinke R, Dendooven P, Löhner H, Schaart DR (2012) Monolithic LaBr3: Ce crystals on silicon photomultiplier arrays for time-of-flight positron emission tomography. Phys Med Biol 57:2219

    Article  Google Scholar 

  151. Levin C (2008) New imaging technologies to enhance the molecular sensitivity of positron emission tomography. Proc IEEE 96:439–467

    Article  Google Scholar 

  152. Spieler H (1982) Fast timing methods for semiconductor detectors. IEEE Trans Nucl Sci 29:1142–1158

    Article  Google Scholar 

  153. Lecomte R, Pepin C, Rouleau D, Dautet H, McIntyre R, McSween D, Webb P (1999) Radiation detection measurements with a new “Buried Juncion” silicon avalanche photodiode. Nucl Instr Meth A 423:92–102

    Article  Google Scholar 

  154. Fishburn MW, Charbon E (2010) System tradeoffs in gamma-ray detection utilizing SPAD arrays and scintillators. IEEE Trans Nucl Sci 57:2549–2557

    Article  Google Scholar 

  155. Seifert S, van Dam HT, Schaart DR (2012) The lower bound on the timing resolution of scintillation detectors. Phys Med Biol 57:1797–1814

    Article  Google Scholar 

  156. Dorenbos P (2010) Fundamental limitations in the performance of Ce3+, Pr3+, and Eu2+ activated scintillators. IEEE Trans Nucl Sci 57:1162–1167

    Article  Google Scholar 

  157. Derenzo SE, Weber MJ, Klintenberg MK (2002) Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga and CdS:In. Nucl Instr Meth A 486:214–219

    Article  Google Scholar 

  158. Bourret-Courchesne ED, Derenzo SE, Weber MJ (2009) Development of ZnO:Ga as an ultra-fast scintillator. Nucl Instr Meth A 601:358–363

    Article  Google Scholar 

  159. Korpar S, Dolenec R, Križan P, Pestotnik R, Stanovnik A (2011) Study of TOF PET using cherenkov light. Nucl Instr Meth A 654:532–538

    Article  Google Scholar 

  160. Pichler BJ, Judenhofer MS, Wehrl HF (2008) PET/MRI hybrid imaging: devices and initial results. Eur Radiol 18:1077–1086

    Article  Google Scholar 

  161. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, Thielscher A, Kneilling M et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  Google Scholar 

  162. Cherry SR, Louie AY, Jacobs RE (2008) The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE 96:416–438

    Article  Google Scholar 

  163. Judenhofer MS, Cherry SR (2013) Applications for preclinical PET/MRI. Semin Nucl Med 43:19–29

    Article  Google Scholar 

  164. Li G, Xie H, Ning H, Capala J, Arora BC, Coleman CN, Camphausen K, Miller RW (2005) A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities. Int J Radiat Oncol Biol Phys 63:261–273

    Google Scholar 

  165. Vaska P, Cao T (2013) The state of instrumentation for combined positron emission tomography and magnetic resonance imaging. Semin Nucl Med 43:11–18

    Article  Google Scholar 

  166. Hofmann M, Pichler B, Schölkopf B, Beyer T (2008) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36:93–104

    Article  Google Scholar 

  167. Wagenknecht G, Kops ER, Mantlik F, Fried E, Pilz T (2011) Attenuation correction in MR-BrainPET with segmented T1-weighted MR images of the patient’s head—a comparative study with CT. IEEE NSS-MIC Conf Rec, pp 2261–2266

    Google Scholar 

  168. Deans SR (2007) The radon transform and some of its applications. Courier Dover Publications

    Google Scholar 

  169. Pratx G, Xing L (2011) GPU computing in medical physics: a review. Med Phys 38:2685–2697

    Article  Google Scholar 

  170. Cabral B, Cam N, Foran J (1994) Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Proceedings of the volume visualization, New York, USA. ACM Press, pp 91–98

    Google Scholar 

  171. Pratx G, Chinn G, Olcott P, Levin CS (2009) Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imag 28:435–445

    Article  Google Scholar 

  172. Cui J, Pratx G, Prevrhal S, Levin CS (2011) Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA. Med Phys 38:6775–6786

    Article  Google Scholar 

  173. Chinn G, Levin CS (2011) A maximum NEC criterion for compton collimation to accurately identify true coincidences in PET. IEEE Trans Med Imag 30:1341–1352

    Article  Google Scholar 

  174. Oliver JF, Rafecas M (2010) Improving the singles rate method for modeling accidental coincidences in high-resolution PET. Phys Med Biol 55:6951–6971

    Article  Google Scholar 

  175. Grotus N, Reader AJ, Stute S, Rosenwald JC, Giraud P, Buvat I (2009) Fully 4D list-mode reconstruction applied to respiratory-gated PET scans. Phys Med Biol 54:1705–1721

    Article  Google Scholar 

  176. Lin F, Qi J (2010) A residual correction method for high-resolution PET reconstruction with application to on-the-fly Monte Carlo based model of positron range. Med Phys 37:704

    Article  Google Scholar 

  177. Reader AJ, Zaidi H (2007) Advances in PET image reconstruction. PET Clin 2:173–190

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Virginia Spanoudaki, David Hsu, and David Freese for discussions regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Vandenbroucke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Vandenbroucke, A., Levin, C.S. (2014). Engineering the Next-Generation PET Detectors. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_28

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics