Skip to main content

Engineering of Mesoporous Silica Nanoparticles for In Vivo Cancer Imaging and Therapy

  • Chapter
  • First Online:
Book cover Engineering in Translational Medicine

Abstract

Mesoporous silica nanoparticles (MSNs) possess many attractive properties, such as good biocompatibility, large surface area, high pore volume, uniform and tunable pore size, and have been intensively investigated as novel drug delivery systems for more than 10 years. Although in vitro imaging and therapeutic applications by using MSNs have been reached a great success, transferring these to the in vivo level is still facing big challenges and is now under intensive investigations. In this chapter, we summarized the very recent progress and future directions of engineering MSNs for biological imaging and therapy in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan D (2013) Theranostic nanomedicine with functional nanoarchitecture. Mol Pharm 10(3):781–782. doi:10.1021/mp400044j

    Google Scholar 

  2. Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44(10):999–1008. doi:10.1021/ar200094a

    Google Scholar 

  3. Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841–841. doi:10.1021/ar200231d

    Google Scholar 

  4. Ma X, Zhao Y, Liang X-J (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44(10):1114–1122. doi:10.1021/ar2000056

    Google Scholar 

  5. Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44(10):875–882. doi:10.1021/ar200090c

    MathSciNet  Google Scholar 

  6. Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44(10):914–924. doi:10.1021/ar200061q

    Google Scholar 

  7. Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404. doi:10.1039/c0cs00180e

    Google Scholar 

  8. Liu Z, Liang XJ (2012) Nano-carbons as theranostics. Theranostics 2(3):235–237. doi:10.7150/thno.4156

    MathSciNet  Google Scholar 

  9. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547. doi:10.1039/c2cs35342c

    Google Scholar 

  10. Wang F, Banerjee D, Liu YS, Chen XY, Liu XG (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854. doi:10.1039/c0an00144a

    Google Scholar 

  11. Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323–1349. doi:10.1039/c1cs15187h

    Google Scholar 

  12. Ambrogio MW, Thomas CR, Zhao Y-L, Zink JI, Stoddart JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44(10):903–913. doi:10.1021/ar200018x

    Google Scholar 

  13. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater (Deerfield Beach, Fla) 24(12):1504–1534. doi:10.1002/adma.201104763

  14. Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41(7):2673–2685. doi:10.1039/c2cs15229k

    Google Scholar 

  15. Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698. doi:10.1039/c2cs15308d

    Google Scholar 

  16. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson SM, Wiesner U, Bradbury MS (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121(7):2768–2780. doi:10.1172/jci45600

    Google Scholar 

  17. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2000) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. doi:10.1021/cm0011559

    Google Scholar 

  18. Hoffmann F, Cornelius M, Morell J, Froba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251. doi:10.1002/anie.200503075

    Google Scholar 

  19. Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20(37):7924–7937. doi:10.1039/c0jm00554a

    Google Scholar 

  20. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Linden M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1):197–206. doi:10.1021/nn800781r

    Google Scholar 

  21. Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen JC, Stoddart JF, Tamanoi F, Zink JI (2011) Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7(13):1816–1826. doi:10.1002/smll.201002300

    Google Scholar 

  22. Zhu CL, Song XY, Zhou WH, Yang HH, Wen YH, Wang XR (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19(41):7765–7770. doi:10.1039/b907978e

    Google Scholar 

  23. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19(32):5737–5743. doi:10.1039/b905158a

    Google Scholar 

  24. Wang K, He X, Yang X, Shi H (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res. doi:10.1021/ar3001525

    Google Scholar 

  25. Hu X, Zrazhevskiy P, Gao X (2009) Encapsulation of single quantum dots with mesoporous silica. Ann Biomed Eng 37(10):1960–1966. doi:10.1007/s10439-009-9660-y

    Google Scholar 

  26. Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8(1):369–373. doi:10.1021/nl0727415

    Google Scholar 

  27. Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry 18(8):2335–2341. doi:10.1002/chem.201102599

    Google Scholar 

  28. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580–1585. doi:10.1038/nm.2933

    Google Scholar 

  29. Sathe TR, Agrawal A, Nie S (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78(16):5627–5632. doi:10.1021/ac0610309

    Google Scholar 

  30. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689. doi:10.1021/ja0565875

    Google Scholar 

  31. Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176. doi:10.1002/adma.201205292

    Google Scholar 

  32. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605. doi:10.1039/c1cs15246g

    Google Scholar 

  33. Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc, Chem Commun 8:680–682. doi:10.1039/c39930000680

    Google Scholar 

  34. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. doi:10.1021/ar3000986

    Google Scholar 

  35. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860. doi:10.1021/cr068020s

    Google Scholar 

  36. Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(6):18N–21N

    Google Scholar 

  37. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965. doi:10.1152/physrev.00049.2010

    Google Scholar 

  38. Chen PJ, Hu SH, Fan CT, Li ML, Chen YY, Chen SY, Liu DM (2013) A novel multifunctional nano-platform with enhanced anti-cancer and photoacoustic imaging modalities using gold-nanorod-filled silica nanobeads. Chem Commun 49(9):892–894. doi:10.1039/c2cc37702k

    Google Scholar 

  39. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896. doi:10.1021/nn800072t

    Google Scholar 

  40. Pan J, Wan D, Gong J (2011) PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. Chem Commun 47(12):3442–3444. doi:10.1039/c0cc05520d

    Google Scholar 

  41. Feng J, Song SY, Deng RP, Fan WQ, Zhang HJ (2010) Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir 26(5):3596–3600. doi:10.1021/la903008z

    Google Scholar 

  42. Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2012) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12(1):61–67. doi:10.1021/nl202949y

    Google Scholar 

  43. Morelli C, Maris P, Sisci D, Perrotta E, Brunelli E, Perrotta I, Panno ML, Tagarelli A, Versace C, Casula MF, Testa F, Ando S, Nagy JB, Pasqua L (2011) PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. Nanoscale 3(8):3198–3207. doi:10.1039/c1nr10253b

    Google Scholar 

  44. Roggers RA, Lin VS, Trewyn BG (2012) Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and HeLa and normal mouse liver cell biocompatibility and cellular internalization. Mol Pharm 9(9):2770–2777. doi:10.1021/mp200613y

    Google Scholar 

  45. Hocine O, Gary-Bobo M, Brevet D, Maynadier M, Fontanel S, Raehm L, Richeter S, Loock B, Couleaud P, Frochot C, Charnay C, Derrien G, Smaihi M, Sahmoune A, Morere A, Maillard P, Garcia M, Durand JO (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402(1–2):221–230. doi:10.1016/j.ijpharm.2010.10.004

    Google Scholar 

  46. Lai J, Shah BP, Garfunkel E, Lee KB (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7(3):2741–2750. doi:10.1021/nn400199t

    Google Scholar 

  47. Wu S, Li Z, Han J, Han S (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem Commun 47(40):11276–11278. doi:10.1039/c1cc14627k

    Google Scholar 

  48. He Q, Zhang Z, Gao F, Li Y, Shi J (2011) In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 7(2):271–280. doi:10.1002/smll.201001459

    Google Scholar 

  49. Huang X, Zhang F, Lee S, Swierczewska M, Kiesewetter DO, Lang L, Zhang G, Zhu L, Gao H, Choi HS, Niu G, Chen X (2012) Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 33(17):4370–4378. doi:10.1016/j.biomaterials.2012.02.060

    Google Scholar 

  50. Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW (2009) Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater 19(2):215–222. doi:DOI10.1002/adfm.200800753

    Google Scholar 

  51. Souris JS, Lee CH, Cheng SH, Chen CT, Yang CS, Ho JA, Mou CY, Lo LW (2010) Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 31(21):5564–5574. doi:10.1016/j.biomaterials.2010.03.048

    Google Scholar 

  52. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.1038/nmeth.1248

    Google Scholar 

  53. Gao X, Dave SR (2007) Quantum dots for cancer molecular imaging. Adv Exp Med Biol 620:57–73

    Google Scholar 

  54. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354. doi:10.1039/b915139g

    Google Scholar 

  55. Derfus AM, Chan WCW, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. doi:10.1021/nl0347334

    Google Scholar 

  56. Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31(27):7078–7085. doi:10.1016/j.biomaterials.2010.05.065

    Google Scholar 

  57. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S-T, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50(32):7385–7390. doi:10.1002/anie.201101447

    Google Scholar 

  58. Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50(26):5808–5829. doi:10.1002/anie.201005159

    Google Scholar 

  59. Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X (2012) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134(2):1323–1330. doi:10.1021/ja2102604

    Google Scholar 

  60. Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106(27):10917–10921. doi:10.1073/pnas.0904792106

    Google Scholar 

  61. Cheng L, Wang C, Liu Z (2012) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5(1):23–37. doi:10.1039/c2nr32311g

    Google Scholar 

  62. Park YI, Kim JH, Lee KT, Jeon KS, Bin Na H, Yu JH, Kim HM, Lee N, Choi SH, Baik SI, Kim H, Park SP, Park BJ, Kim YW, Lee SH, Yoon SY, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21(44):4467–4471. doi:DOI 10.1002/adma.200901356

    Google Scholar 

  63. Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7):937–943. doi:10.1016/j.biomaterials.2007.10.051

    Google Scholar 

  64. Nam SH, Bae YM, Park YI, Kim JH, Kim HM, Choi JS, Lee KT, Hyeon T, Suh YD (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed 50(27):6093–6097. doi:10.1002/anie.201007979

    Google Scholar 

  65. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694. doi:10.1021/ac901960d

    Google Scholar 

  66. Chen F, Bu WB, Zhang SJ, Liu XH, Liu JN, Xing HY, Xiao QF, Zhou LP, Peng WJ, Wang LZ, Shi JL (2011) Positive and negative lattice shielding effects co-existing in Gd(III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21(22):4285–4294. doi:DOI10.1002/adfm.201101663

    Google Scholar 

  67. Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19(6):853–859. doi:10.1002/adfm.200800765

    Google Scholar 

  68. Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295. doi:10.1016/j.biomaterials.2010.01.040

    Google Scholar 

  69. He M, Huang P, Zhang CL, Hu HY, Bao CC, Gao G, He R, Cui DX (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21(23):4470–4477. doi:DOI10.1002/adfm.201101040

    Google Scholar 

  70. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed 51(6):1437–1442. doi:10.1002/anie.201106686

    Google Scholar 

  71. Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Core-shell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33(18):4618–4627. doi:10.1016/j.biomaterials.2012.03.007

    Google Scholar 

  72. Hong H, Zhang Y, Sun J, Cai W (2009) Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4(5):399–413. doi:10.1016/j.nantod.2009.07.001

    Google Scholar 

  73. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S. doi:10.2967/jnumed.107.045922

    MathSciNet  Google Scholar 

  74. Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212(3):609–614

    Google Scholar 

  75. Villaraza AJ, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110(5):2921–2959. doi:10.1021/cr900232t

    Google Scholar 

  76. Huang CC, Tsai CY, Sheu HS, Chuang KY, Su CH, Jeng US, Cheng FY, Lei HY, Yeh CS (2011) Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd(3) + - chelated mesoporous silica shells. ACS Nano 5(5):3905–3916. doi:10.1021/nn200306g

    Google Scholar 

  77. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441. doi:10.1002/anie.200802469

    Google Scholar 

  78. Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A, Bulte JW, Hyeon T, Gilad AA (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133(9):2955–2961. doi:10.1021/ja1084095

    Google Scholar 

  79. Peng YK, Lai CW, Liu CL, Chen HC, Hsiao YH, Liu WL, Tang KC, Chi Y, Hsiao JK, Lim KE, Liao HE, Shyue JJ, Chou PT (2011) A new and facile method to prepare uniform hollow MnO/functionalized mSiO(2) core/shell nanocomposites. ACS Nano 5(5):4177–4187. doi:10.1021/nn200928r

    Google Scholar 

  80. Taylor KM, Kim JS, Rieter WJ, An H, Lin W (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130(7):2154–2155. doi:10.1021/ja710193c

    Google Scholar 

  81. Shao YZ, Liu LZ, Song SQ, Cao RH, Liu H, Cui CY, Li X, Bie MJ, Li L (2011) A novel one-step synthesis of Gd3 + -incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media Mol Imaging 6(2):110–118. doi:10.1002/cmmi.412

    Google Scholar 

  82. Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, Della Rocca J, Okoruwa C, An H, Lin W, Lin W (2011) Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 7(24):3519–3528. doi:10.1002/smll.201100521

    Google Scholar 

  83. Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4(10):6001–6013. doi:10.1021/nn1015117

    Google Scholar 

  84. Xuan S, Wang F, Lai JM, Sham KW, Wang YX, Lee SF, Yu JC, Cheng CH, Leung KC (2011) Synthesis of biocompatible, mesoporous Fe(3)O(4) nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Interfaces 3(2):237–244. doi:10.1021/am1012358

    Google Scholar 

  85. Hsiao JK, Tsai CP, Chung TH, Hung Y, Yao M, Liu HM, Mou CY, Yang CS, Chen YC, Huang DM (2008) Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4(9):1445–1452. doi:10.1002/smll.200701316

    Google Scholar 

  86. Liu HM, Wu SH, Lu CW, Yao M, Hsiao JK, Hung Y, Lin YS, Mou CY, Yang CS, Huang DM, Chen YC (2008) Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 4(5):619–626. doi:10.1002/smll.200700493

    Google Scholar 

  87. Shen Y, Shao Y, He H, Tan Y, Tian X, Xie F, Li L (2013) Gadolinium(3 +)-doped mesoporous silica nanoparticles as a potential magnetic resonance tracer for monitoring the migration of stem cells in vivo. Int J Nanomed 8:119–127. doi:10.2147/ijn.s38213

    Google Scholar 

  88. Yeh CS, Su CH, Ho WY, Huang CC, Chang JC, Chien YH, Hung ST, Liau MC, Ho HY (2013) Tumor targeting and MR imaging with lipophilic cyanine-mediated near-infrared responsive porous Gd silicate nanoparticles. Biomaterials 34(22):5677–5688. doi:10.1016/j.biomaterials.2013.04.020

    Google Scholar 

  89. Huang X, Zhang F, Wang H, Niu G, Choi KY, Swierczewska M, Zhang G, Gao H, Wang Z, Zhu L, Choi HS, Lee S, Chen X (2013) Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 34(7):1772–1780. doi:10.1016/j.biomaterials.2012.11.032

    Google Scholar 

  90. Carniato F, Tei L, Arrais A, Marchese L, Botta M (2013) Selective anchoring of Gd(III) chelates on the external surface of organo-modified mesoporous silica nanoparticles: a new chemical strategy to enhance relaxivity. Chemistry 19(4):1421–1428. doi:10.1002/chem.201202670

    Google Scholar 

  91. Shao Y, Tian X, Hu W, Zhang Y, Liu H, He H, Shen Y, Xie F, Li L (2012) The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 33(27):6438–6446. doi:10.1016/j.biomaterials.2012.05.065

    Google Scholar 

  92. Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y, Qu H, Wang Z, Li Y, Wang X, Zhang K, Zhang L, Shi J (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33(29):7126–7137. doi:10.1016/j.biomaterials.2012.06.059

    Google Scholar 

  93. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895. doi:10.1038/nmat1251

    Google Scholar 

  94. Zhang T, Ge J, Hu Y, Yin Y (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7(10):3203–3207. doi:10.1021/nl071928t

    Google Scholar 

  95. Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468. doi:10.1002/cmmi.1473

    Google Scholar 

  96. Gandhi S, Sethuraman S, Krishnan UM (2012) Synthesis, characterization and biocompatibility evaluation of iron oxide incorporated magnetic mesoporous silica. Dalton Trans 41(40):12530–12537. doi:10.1039/c2dt30853c

    Google Scholar 

  97. Zhang L, Wang Y, Tang Y, Jiao Z, Xie C, Zhang H, Gu P, Wei X, Yang GY, Gu H, Zhang C (2013) High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model. Nanoscale 5(10):4506–4516. doi:10.1039/c3nr00119a

    Google Scholar 

  98. Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J (2013) Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 34(8):2057–2068. doi:10.1016/j.biomaterials.2012.11.044

    Google Scholar 

  99. Wang X, Chen H, Chen Y, Ma M, Zhang K, Li F, Zheng Y, Zeng D, Wang Q, Shi J (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 24(6):785–791. doi:10.1002/adma.201104033

    Google Scholar 

  100. Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Ren Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19(18):17030–17039

    Google Scholar 

  101. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5):4131–4144. doi:10.1021/nn200809t

    Google Scholar 

  102. Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16):1794–1805. doi:10.1002/smll.201000538

    Google Scholar 

  103. Lu J, Li Z, Zink JI, Tamanoi F (2012) In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 8(2):212–220. doi:10.1016/j.nano.2011.06.002

    Google Scholar 

  104. Wang LG, Liu XM, Kreis W, Budman DR (1999) The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44(5):355–361

    Google Scholar 

  105. Montero A, Fossella F, Hortobagyi G, Valero V (2005) Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 6(4):229–239. doi:10.1016/s1470-2045(05)70094-2

    Google Scholar 

  106. Li L, Tang F, Liu H, Liu T, Hao N, Chen D, Teng X, He J (2010) In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4(11):6874–6882. doi:10.1021/nn100918a

    Google Scholar 

  107. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. doi:10.3322/caac.20114

    Google Scholar 

  108. Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Blanchard-Desce M, Morere A, Garcia M, Durand JO, Raehm L (2011) Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed 50(48):11425–11429. doi:10.1002/anie.201104765

    Google Scholar 

  109. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–173. doi:10.1021/cr020357g

    Google Scholar 

  110. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2012) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. doi:10.1021/nn304872n

    Google Scholar 

  111. Shan JN, Budijono SJ, Hu GH, Yao N, Kang YB, Ju YG, Prud’homme RK (2011) Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv Funct Mater 21(13):2488–2495. doi:DOI10.1002/adfm.201002516

    Google Scholar 

  112. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon SY, Suh YD, Lee SH, Hyeon T (2012) Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24(42):5755–5761. doi:10.1002/adma.201202433

    Google Scholar 

  113. Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154. doi:10.1016/j.biomaterials.2011.05.007

    Google Scholar 

  114. Zhao Z, Han Y, Lin C, Hu D, Wang F, Chen X, Chen Z, Zheng N (2012) Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J 7(4):830–837. doi:10.1002/asia.201100879

    Google Scholar 

  115. Chatterjee DK, Yong Z (2008) Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 3(1):73–82. doi:10.2217/17435889.3.1.73

    Google Scholar 

  116. Ungun B, Prud’homme RK, Budijon SJ, Shan J, Lim SF, Ju Y, Austin R (2009) Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express 17(1):80–86

    Google Scholar 

  117. Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285–2290. doi:10.1002/smll.200900692

    Google Scholar 

  118. Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, Shi J (2012) A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry 18(23):7082–7090. doi:10.1002/chem.201103611

    Google Scholar 

  119. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952

    Google Scholar 

  120. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719. doi:10.1038/nchembio839

    Google Scholar 

  121. Na HK, Kim MH, Park K, Ryoo SR, Lee KE, Jeon H, Ryoo R, Hyeon C, Min DH (2012) Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 8(11):1752–1761. doi:10.1002/smll.201200028

    Google Scholar 

  122. Schmitz AC, Gianfelice D, Daniel BL, Mali WP, van den Bosch MA (2008) Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions. Eur Radiol 18(7):1431–1441. doi:10.1007/s00330-008-0906-0

    Google Scholar 

  123. Chen Y, Chen H, Sun Y, Zheng Y, Zeng D, Li F, Zhang S, Wang X, Zhang K, Ma M, He Q, Zhang L, Shi J (2011) Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 50(52):12505–12509. doi:10.1002/anie.201106180

    Google Scholar 

  124. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine 6:2963–2979. doi:10.2147/ijn.s16923

    Google Scholar 

  125. Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20(20):3832–3838. doi:10.1002/adma.200800921

    Google Scholar 

  126. Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423. doi:10.1002/adma.201104714

    Google Scholar 

  127. Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50(4):891–895. doi:10.1002/anie.201002820

    Google Scholar 

  128. Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, Shi J (2012) Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33(3):989–998. doi:10.1016/j.biomaterials.2011.10.017

    Google Scholar 

  129. Mohamed F, Stuart OA, Glehen O, Urano M, Sugarbaker PH (2004) Docetaxel and hyperthermia: factors that modify thermal enhancement. J Surg Oncol 88(1):14–20. doi:10.1002/jso.20117

    Google Scholar 

  130. Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24(6):755–761. doi:10.1002/adma.201103343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen or Hao Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Chen, F., Cai, W., Hong, H. (2014). Engineering of Mesoporous Silica Nanoparticles for In Vivo Cancer Imaging and Therapy. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics