Skip to main content

Engineering Upconversion Nanoparticles for Biomedical Imaging and Therapy

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Upconversion nanoparticle (UCNP) has been attracting growing interests in the last few years owing to their unique upconversion luminescence features. Although the size and morphology control of UCNP have been well-documented, engineering of ultrasmall-sized UCNP with excellent optical properties is still in its early stage. With increasing interests in using UCNP as deeper tissue imaging probe, some new strategies have been developed for enhancing the emission efficiency of red and near-infrared bands. Also, doping suitable ions into UCNP crystal lattices has been accepted as one of the most unique and efficient techniques for integrating nearly all clinical relevant imaging modalities together in one single UCNP. Cancer multimodal imaging (or therapy) with these lanthanide ions-doped UCNPs has become a new hot topic in this field. Here, we summarized the very recent advances in engineering of UCNP for biological imaging and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323–1349. doi:10.1039/c1cs15187h

    Article  Google Scholar 

  2. Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104(1):139–173. doi:10.1021/cr020357g

    Article  Google Scholar 

  3. Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50(26):5808–5829. doi:10.1002/anie.201005159

    Article  Google Scholar 

  4. Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X (2012) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134(2):1323–1330. doi:10.1021/ja2102604

    Article  Google Scholar 

  5. Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci U S A 106(27):10917–10921. doi:10.1073/pnas.0904792106

    Article  Google Scholar 

  6. Cheng L, Wang C, Liu Z (2012) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5(1):23–37. doi:10.1039/c2nr32311g

    Article  Google Scholar 

  7. Park YI, Kim JH, Lee KT, Jeon KS, Bin Na H, Yu JH, Kim HM, Lee N, Choi SH, Baik SI, Kim H, Park SP, Park BJ, Kim YW, Lee SH, Yoon SY, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21 (44):4467. doi:10.1002/adma.200901356

  8. Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7):937–943. doi:10.1016/j.biomaterials.2007.10.051

    Article  Google Scholar 

  9. Nam SH, Bae YM, Park YI, Kim JH, Kim HM, Choi JS, Lee KT, Hyeon T, Suh YD (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed 50(27):6093–6097. doi:10.1002/anie.201007979

    Article  Google Scholar 

  10. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694. doi:10.1021/ac901960d

    Article  Google Scholar 

  11. Chen F, Bu WB, Zhang SJ, Liu XH, Liu JN, Xing HY, Xiao QF, Zhou LP, Peng WJ, Wang LZ, Shi JL (2011) Positive and negative lattice shielding effects co-existing in Gd(III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21(22):4285–4294. doi:10.1002/adfm.201101663

    Article  Google Scholar 

  12. Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19(6):853–859. doi:10.1002/adfm.200800765

    Article  Google Scholar 

  13. Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295. doi:10.1016/j.biomaterials.2010.01.040

    Article  Google Scholar 

  14. He M, Huang P, Zhang CL, Hu HY, Bao CC, Gao G, He R, Cui DX (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/Ionic Liquid Two-Phase System for in vivo dual-modality imaging. Adv Funct Mater 21(23):4470–4477. doi:10.1002/adfm.201101040

    Article  Google Scholar 

  15. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed 51(6):1437–1442. doi:10.1002/anie.201106686

    Article  Google Scholar 

  16. Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Core-shell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33(18):4618–4627. doi:10.1016/j.biomaterials.2012.03.007

    Article  Google Scholar 

  17. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854. doi:10.1039/c0an00144a

    Article  Google Scholar 

  18. Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Nayak TR, Goel S, Bean J, Theuer CP, Barnhart TE, Liu Z, Cai W (2012) In Vivo Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nanographene. Acs Nano 6(3):2361–2370. doi:10.1021/nn204625e

    Article  Google Scholar 

  19. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580–1585. doi:10.1038/nm.2933

    Article  Google Scholar 

  20. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124. doi:10.1038/nature03968

    Article  Google Scholar 

  21. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128(19):6426–6436. doi:10.1021/ja060212h

    Article  Google Scholar 

  22. Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett 7(3):847–852. doi:10.1021/nl070235+

    Article  Google Scholar 

  23. Qian HS, Zhang Y (2008) Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24(21):12123–12125. doi:10.1021/la802343f

    Article  Google Scholar 

  24. Li Z, Zhang Y (2008) An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19(34):345606. doi:10.1088/0957-4484/19/34/345606

    Article  Google Scholar 

  25. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47. doi:10.1038/nnano.2009.314

    Article  Google Scholar 

  26. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170. doi:10.1038/nbt1340

    Article  Google Scholar 

  27. Boyer JC, van Veggel FC (2010) Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2(8):1417–1419. doi:10.1039/c0nr00253d

    Article  Google Scholar 

  28. Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong MH, Liu XG (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065. doi:10.1038/Nature08777

    Article  Google Scholar 

  29. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133(43):17122–17125. doi:10.1021/ja207078s

    Article  Google Scholar 

  30. Wang F, Wang J, Liu X (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49(41):7456–7460. doi:10.1002/anie.201003959

    Article  Google Scholar 

  31. Chen Y, Gao Y, Chen H, Zeng D, Li Y, Zheng Y, Li F, Ji X, Wang X, Chen F, He Q, Zhang L, Shi J (2012) Engineering inorganic nanoemulsions/nanoliposomes by fluoride-silica chemistry for efficient delivery/co-delivery of hydrophobic agents. Adv Funct Mater:n/a-n/a. doi:10.1002/adfm.201102052

    Google Scholar 

  32. Ostrowski AD, Chan EM, Gargas DJ, Katz EM, Han G, Schuck PJ, Milliron DJ, Cohen BE (2012) Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6(3):2686–2692. doi:10.1021/nn3000737

    Article  Google Scholar 

  33. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840. doi:10.1021/nl1041929

    Article  Google Scholar 

  34. Zhang T, Ge J, Hu Y, Yin Y (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7(10):3203–3207. doi:10.1021/nl071928t

    Article  Google Scholar 

  35. Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029. doi:10.1021/ja076151k

    Article  Google Scholar 

  36. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44(37):6054–6057. doi:10.1002/anie.200501907

    Article  Google Scholar 

  37. Li LL, Zhang R, Yin L, Zheng K, Qin W, Selvin PR, Lu Y (2012) Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed 51(25):6121–6125. doi:10.1002/anie.201109156

    Article  Google Scholar 

  38. Liu Q, Li C, Yang T, Yi T, Li F (2010) “Drawing” upconversion nanophosphors into water through host-guest interaction. Chem Commun 46(30):5551–5553. doi:10.1039/c0cc01352h

    Article  Google Scholar 

  39. Chen F, Zhang S, Bu W, Liu X, Chen Y, He Q, Zhu M, Zhang L, Zhou L, Peng W, Shi J (2010) A “neck-formation” strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe. Chemistry 16(37):11254–11260. doi:10.1002/chem.201000525

    Article  Google Scholar 

  40. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8(11):3834–3838

    Article  Google Scholar 

  41. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon SY, Suh YD, Lee SH, Hyeon T (2012) Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24(42):5755–5761. doi:10.1002/adma.201202433

    Article  Google Scholar 

  42. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24(9):1226–1231. doi:10.1002/adma.201104741

    Article  Google Scholar 

  43. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10(12):968–973. doi:10.1038/nmat3149

    Article  Google Scholar 

  44. Wang J, Wang F, Wang C, Liu Z, Liu X (2011) Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed 50(44):10369–10372. doi:10.1002/anie.201104192

    Article  Google Scholar 

  45. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130(17):5642–5643. doi:10.1021/ja800868a

    Article  Google Scholar 

  46. Chen G, Ohulchanskyy TY, Kumar R, Agren H, Prasad PN (2010) Ultrasmall monodisperse NaYF(4):Yb(3+)/Tm(3+) nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4(6):3163–3168. doi:10.1021/nn100457j

    Article  Google Scholar 

  47. Dong C, Korinek A, Blasiak B, Tomanek B, van Veggel FCJM (2012) Cation exchange: a facile method to make NaYF4:Yb, Tm-NaGdF4Core–shell nanoparticles with a thin, tunable, and uniform shell. Chem Mater 24(7):1297–1305. doi:10.1021/cm2036844

    Article  Google Scholar 

  48. Johnson NJ, Korinek A, Dong C, van Veggel FC (2012) Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc 134(27):11068–11071. doi:10.1021/ja302717u

    Article  Google Scholar 

  49. Chen G, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li Z, Song J, Pandey RK, Agren H, Prasad PN, Han G (2012) (alpha-NaYbF4:Tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6(9):8280–8287. doi:10.1021/nn302972r

    Article  Google Scholar 

  50. Xie MY, Peng XN, Fu XF, Zhang JJ, Lia GL, Yu XF (2009) Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence. Scripta Mater 60(3):190–193. doi:10.1016/j.scriptamat.2008.10.010

    Article  Google Scholar 

  51. Zeng JH, Xie T, Li ZH, Li YD (2007) Monodispersed nanocrystalline fluoroperovskite up-conversion phosphors. Cryst Growth Des 7(12):2774–2777. doi:10.1021/Cg070477n

    Article  Google Scholar 

  52. Cai W, Hong H (2011) Peptoid and positron emission tomography: an appealing combination. Am J Nucl Med Mol Imaging 1(1):76–79

    Google Scholar 

  53. Cai W, Zhang Y, Kamp TJ (2011) Imaging of induced pluripotent stem cells: from cellular reprogramming to transplantation. Am J Nucl Med Mol Imaging 1(1):18–28

    Google Scholar 

  54. Zhang Y, Cai W (2012) Molecular imaging of insulin-like growth factor 1 receptor in cancer. Am J Nucl Med Mol Imaging 2(2):248–259

    Google Scholar 

  55. Zhang Y, Hong H, Engle JW, Yang Y, Barnhart TE, Cai W (2012) Positron emission tomography and near-infrared fluorescence imaging of vascular endothelial growth factor with dual-labeled bevacizumab. Am J Nucl Med Mol Imaging 2(1):1–13

    MATH  Google Scholar 

  56. Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F (2011) Core-shell NaYF4:Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32(29):7200–7208. doi:10.1016/j.biomaterials.2011.05.094

    Article  Google Scholar 

  57. Guo H, Li Z, Qian H, Hu Y, Muhammad IN (2010) Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology 21(12):125602. doi:10.1088/0957-4484/21/12/125602

    Article  Google Scholar 

  58. Johnson NJJ, Oakden W, Stanisz GJ, Scott Prosser R, van Veggel FCJM (2011) Size-Tunable, Ultrasmall NaGdF4 Nanoparticles: Insights into Their T1 MRI Contrast Enhancement. Chemistry of Materials 23(16):3714–3722. doi:10.1021/cm201297x

  59. Chen F, Bu W, Zhang S, Liu J, Fan W, Zhou L, Peng W, Shi J (2013) Gd3+-Ion-Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization. Adv Funct Mater 23(3):298–307. doi:10.1002/adfm.201201469

    Article  Google Scholar 

  60. Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J (2012) Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33(4):1079–1089. doi:10.1016/j.biomaterials.2011.10.039

    Article  Google Scholar 

  61. Xia A, Chen M, Gao Y, Wu D, Feng W, Li F (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials 33(21):5394–5405. doi:10.1016/j.biomaterials.2012.04.025

    Article  Google Scholar 

  62. Zhou J, Zhu X, Chen M, Sun Y, Li F (2012) Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials 33(26):6201–6210. doi:10.1016/j.biomaterials.2012.05.036

    Article  Google Scholar 

  63. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) Hybrid BaYbF(5) nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv Healthc Mater 1(4):461–466. doi:10.1002/adhm.201200028

    Article  Google Scholar 

  64. Zeng S, Tsang MK, Chan CF, Wong KL, Hao J (2012) PEG modified BaGdF(5):Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials 33(36):9232–9238. doi:10.1016/j.biomaterials.2012.09.019

    Article  Google Scholar 

  65. Xiao Q, Bu W, Ren Q, Zhang S, Xing H, Chen F, Li M, Zheng X, Hua Y, Zhou L, Peng W, Qu H, Wang Z, Zhao K, Shi J (2012) Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging. Biomaterials 33(30):7530–7539. doi:10.1016/j.biomaterials.2012.06.028

    Article  Google Scholar 

  66. Liu Q, Sun Y, Li C, Zhou J, Li C, Yang T, Zhang X, Yi T, Wu D, Li F (2011) 18F-Labeled magnetic-upconversion nanophosphors via rare-Earth cation-assisted ligand assembly. ACS Nano 5(4):3146–3157. doi:10.1021/nn200298y

    Article  Google Scholar 

  67. Sun Y, Yu M, Liang S, Zhang Y, Li C, Mou T, Yang W, Zhang X, Li B, Huang C, Li F (2011) Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32(11):2999–3007. doi:10.1016/j.biomaterials.2011.01.011

    Article  Google Scholar 

  68. Chen F, Bu W, Zhang S, Liu X, Liu J, Xing H, Xiao Q, Zhou L, Peng W, Wang L, Shi J (2011) Positive and negative lattice shielding effects co-existing in Gd(III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21(22):4285–4294. doi:10.1002/adfm.201101663

    Article  Google Scholar 

  69. Liu Q, Chen M, Sun Y, Chen G, Yang T, Gao Y, Zhang X, Li F (2011) Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials 32(32):8243–8253. doi:10.1016/j.biomaterials.2011.07.053

    Article  Google Scholar 

  70. Sun Y, Liu Q, Peng J, Feng W, Zhang Y, Yang P, Li F (2012) Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Biomaterials 27(12):01306–01303 01306. doi:10.1016/j.biomaterials.2012.11.047

    Google Scholar 

  71. Yang Y, Sun Y, Cao T, Peng J, Liu Y, Wu Y, Feng W, Zhang Y, Li F (2013) Hydrothermal synthesis of NaLuF4:153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34(3):774–783

    Article  Google Scholar 

  72. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2012) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. doi:10.1021/nn304872n

    Google Scholar 

  73. Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285–2290. doi:10.1002/smll.200900692

    Article  Google Scholar 

  74. Zhao Z, Han Y, Lin C, Hu D, Wang F, Chen X, Chen Z, Zheng N (2012) Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J 7(4):830–837. doi:10.1002/asia.201100879

    Article  Google Scholar 

  75. Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, Shi J (2012) A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry 18(23):7082–7090. doi:10.1002/chem.201103611

    Article  Google Scholar 

  76. Zhang P, Steelant W, Kumar M, Scholfield M (2007) Versatile photosensitizers for photodynamic therapy at infrared excitation. J Am Chem Soc 129(15):4526–4527. doi:10.1021/ja0700707

    Article  Google Scholar 

  77. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5):4131–4144. doi:10.1021/nn200809t

    Article  Google Scholar 

  78. Shan JN, Budijono SJ, Hu GH, Yao N, Kang YB, Ju YG, Prud’homme RK (2011) Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv Funct Mater 21(13):2488–2495. doi:10.1002/adfm.201002516

    Article  Google Scholar 

  79. Liu JN, Bu W, Pan LM, Zhang S, Chen F, Zhou L, Zhao KL, Peng W, Shi J (2012) Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials 33(29):7282–7290. doi:10.1016/j.biomaterials.2012.06.035

    Article  Google Scholar 

  80. Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120. doi:10.1016/j.biomaterials.2010.09.069

    Article  Google Scholar 

  81. Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154. doi:10.1016/j.biomaterials.2011.05.007

    Google Scholar 

  82. Chatterjee DK, Yong Z (2008) Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 3(1):73–82. doi:10.2217/17435889.3.1.73

    Article  Google Scholar 

  83. Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32(35):9364–9373. doi:10.1016/j.biomaterials.2011.08.053

    Article  Google Scholar 

  84. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee ST, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50(32):7385–7390. doi:10.1002/anie.201101447

    Article  Google Scholar 

  85. Ungun B, Prud’homme RK, Budijon SJ, Shan J, Lim SF, Ju Y, Austin R (2009) Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express 17(1):80–86

    Article  Google Scholar 

  86. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7(6):606–618. doi:10.1016/j.nantod.2012.10.010

    Article  Google Scholar 

  87. Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2012) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12(1):61–67. doi:10.1021/nl202949y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Chen, F., Bu, W., Cai, W., Shi, J. (2014). Engineering Upconversion Nanoparticles for Biomedical Imaging and Therapy. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics