Skip to main content

Engineering Multivalent and Multispecific Protein Therapeutics

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

In nature, there are a wide array of proteins that utilize the principles of multivalency and multispecificity to ensure optimal biological function. Their mechanisms of action have served as inspiration for the development of next-generation protein therapeutics with improved efficacy and safety profiles. Protein therapeutics leverage the inherent affinity and specificity of protein–protein interactions, offering an effective approach for targeting and modulating biochemical pathways. An increased molecular understanding of biological processes that underlie disease pathologies, as well as the advent of new protein engineering platforms, has elevated the sophistication of protein therapeutics entering the clinical pipeline. Here, we discuss the main advantages conferred by multivalency and multispecificity as they are related to protein therapeutics, namely increased targeting affinity through avidity effects, and selectivity for a diseased versus normal state. These aspects lead to greater therapeutic control over an intended biological response, with the potential for reduced side effects. In this chapter, we describe the basic biophysical principles underlying multivalency and multispecificity and discuss how they influence protein design parameters. Finally, we consider how one can utilize these concepts to develop protein therapeutics that address challenging biomedical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones DS, Silverman AP, Cochran JR (2008) Developing therapeutic proteins by engineering ligand–receptor interactions. Trends Biotechnol 26:498–505. doi:10.1016/j.tibtech.2008.05.009

    Article  Google Scholar 

  2. Kiss G, Çelebi-Ölçüm N, Moretti R et al (2013) Computational enzyme design. Angew Chem Int Ed 52:2–28. doi:10.1002/anie.201204077

    Google Scholar 

  3. Karanicolas J, Kuhlman B (2009) Computational design of affinity and specificity at protein–protein interfaces. Curr Opin Struct Biol 19:458–463. doi:10.1016/j.sbi.2009.07.005

    Article  Google Scholar 

  4. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473. doi:10.1016/j.sbi.2007.08.012

    Article  Google Scholar 

  5. Löfblom J (2011) Bacterial display in combinatorial protein engineering. Biotechnol J 6:1115–1129. doi:10.1002/biot.201100129

    Article  Google Scholar 

  6. Sidhu SS, Koide S (2007) Phage display for engineering and analyzing protein interaction interfaces. Curr Opin Struct Biol 17:481–487. doi:10.1016/j.sbi.2007.08.007

    Article  Google Scholar 

  7. Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94:4937–4942

    Article  Google Scholar 

  8. Cuesta AM, Sainz-Pastor N, Bonet J et al (2010) Multivalent antibodies: when design surpasses evolution. Trends Biotechnol 28:355–362. doi:10.1016/j.tibtech.2010.03.007

    Article  Google Scholar 

  9. Fitzgerald J, Lugovskoy A (2011) Rational engineering of antibody therapeutics targeting multiple oncogene pathways. MAbs 3:299–309. doi:10.4161/mabs.3.3.15299

    Article  Google Scholar 

  10. Kufer P, Lutterbüse R, Baeuerle PA (2004) A revival of bispecific antibodies. Trends Biotechnol 22:238–244. doi:10.1016/j.tibtech.2004.03.006

    Article  Google Scholar 

  11. Schaefer G, Haber L, Crocker LM et al (2011) A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 20:472–486. doi:10.1016/j.ccr.2011.09.003

    Article  Google Scholar 

  12. Erijman A, Aizner Y, Shifman JM (2011) Multispecific recognition: mechanism, evolution, and design. Biochemistry 50:602–611. doi:10.1021/bi101563v

    Article  Google Scholar 

  13. Alarcón B, Swamy M, Van Santen HM, Schamel WWA (2006) T-cell antigen-receptor stoichiometry: pre-clustering for sensitivity. EMBO Rep 7:490–495. doi:10.1038/sj.embor.7400682

    Article  Google Scholar 

  14. Tummino PJ, Copeland RA (2008) Residence time of receptor–ligand complexes and its effect on biological function. Biochemistry 47:5481–5492. doi:10.1021/bi8002023

    Article  Google Scholar 

  15. Davda JP, Hansen RJ (2010) Properties of a general PK/PD model of antibody-ligand interactions for therapeutic antibodies that bind to soluble endogenous targets. MAbs 2:576–588. doi:10.4161/mabs.2.5.12833

    Article  Google Scholar 

  16. Aston PJ, Derks G, Raji A et al (2011) Mathematical analysis of the pharmacokinetic-pharmacodynamic (PKPD) behaviour of monoclonal antibodies: predicting in vivo potency. J Theor Biol 281:113–121. doi:10.1016/j.jtbi.2011.04.030

    Article  MathSciNet  Google Scholar 

  17. Handl HL, Vagner J, Han H et al (2004) Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets 8:565–586. doi:10.1517/14728222.8.6.565

    Article  Google Scholar 

  18. Mammen M, Choi S-K, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794. doi:10.1002/chin.199909293

    Article  Google Scholar 

  19. Krishnamurthy VM, Estroff LA, Whitesides GM (2006) Multivalency in ligand design. In: Jahnke W, Erlanson DA (eds) Fragment-based Approaches in Drug Discovery. WILEY-VCH Verlag GmbH & Co., Weinheim, pp 11–53

    Chapter  Google Scholar 

  20. Brady GP, Sharp KA (1997) Entropy in protein folding and in protein–protein interactions. Curr Opin Struct Biol 7:215–221. doi:0959-440X-007-00215

    Article  Google Scholar 

  21. Gorman J, Greene EC (2008) Visualizing one-dimensional diffusion of proteins along DNA. Nat Struct Mol Biol 15:768–774. doi:10.1038/nsmb.1441

    Article  Google Scholar 

  22. Lippow SM, Tidor B (2007) Progress in computational protein design. Curr Opin Biotechnol 18:305–311. doi:10.1016/j.copbio.2007.04.009

    Article  Google Scholar 

  23. Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424–1444. doi:10.1021/jm2010332

    Article  Google Scholar 

  24. Williams DH, Stephens E, O’Brien DP, Zhou M (2004) Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew Chem Int Ed 43:6596–6616. doi:10.1002/anie.200300644

    Article  Google Scholar 

  25. Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 78:4046–4050. doi:10.1038/386671a0

    Article  Google Scholar 

  26. Zhou H-X (2003) Quantitative account of the enhanced affinity of two linked scFvs specific for different epitopes on the same antigen. J Mol Biol 329:1–8. doi:10.1016/S0022-2836(03)00372-3

    Article  Google Scholar 

  27. Risau W (1997) Mechanisms of Angiogenesis. Nature 386:671–674

    Article  Google Scholar 

  28. Fuh G, Li B, Crowley C et al (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273:11197–11204

    Article  Google Scholar 

  29. Nakamura T, Mizuno S (2010) The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B 86:588–610. doi:10.2183/pjab.86.588

    Article  Google Scholar 

  30. Holmes O, Pillozzi S, Deakin JA et al (2007) Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains. J Mol Biol 367:395–408. doi:10.1016/j.jmb.2006.12.061

    Article  Google Scholar 

  31. Stamos J, Lazarus RA, Yao X et al (2004) Crystal structure of the HGF beta-chain in complex with the sema domain of the Met receptor. EMBO J 23:2325–2335. doi:10.1038/sj.emboj.7600243

    Article  Google Scholar 

  32. Jakubczak JL, Larochelle WJ, Merlino G (1998) NK1, a natural splice variant of hepatocyte growth factor/scatter factor, is a partial agonist in vivo. Mol Cell Biol 18:1275–1283

    Google Scholar 

  33. Hudson PJ, Souriau C (2003) Engineered antibodies. Nature 9:129–134

    Article  Google Scholar 

  34. Duan J, Wu J, Valencia CA, Liu R (2007) Fibronectin type III domain based monobody with high avidity. Biochemistry 46:12656–12664. doi:10.1021/bi701215e

    Article  Google Scholar 

  35. Ekerljung L, Wållberg H, Sohrabian A et al (2012) Generation and evaluation of bispecific affibody molecules for simultaneous targeting of EGFR and HER2. Bioconjugate Chem 23:1802–1811. doi:10.1021/bc3000645

    Article  Google Scholar 

  36. Chen X, Zaro JL, Shen W-C (2012) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. doi:10.1016/j.addr.2012.09.039

    Google Scholar 

  37. Rao J (1998) A trivalent system from vancomycin·d-Ala-d-Ala with higher affinity than avidin·biotin. Science 280:708–711. doi:10.1126/science.280.5364.708

    Article  Google Scholar 

  38. Chaudri ZN, Bartlet-jones M, Panayotou G et al (1999) Dual specificity antibodies using a double-stranded oligonucleotide bridge. FEBS Lett 450:14–16

    Google Scholar 

  39. Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987) Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked Fab’ gamma fragments. J Immunol 139:2367–2375

    Google Scholar 

  40. Jung G, Freimann U, Von Marschall Z et al (1991) Target cell-induced T cell activation with bi- and trispecific antibody fragments. Eur J Immunol 21:2431–2435. doi:10.1002/eji.1830211020

    Article  Google Scholar 

  41. Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211:943–958. doi:10.1016/0022-2836(90)90085-Z

    Article  Google Scholar 

  42. Kipriyanov SM, Little M, Kropshofer H et al (1996) Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion. Protein Eng 9:203–211

    Article  Google Scholar 

  43. Kontermann RE (2012) Dual targeting strategies with bispecific antibodies. MAbs 4:182–197

    Article  Google Scholar 

  44. Lee C-H, Park K-J, Kim SJ et al (2011) Generation of bivalent and bispecific kringle single domains by loop grafting as potent agonists against death receptors 4 and 5. J Mol Biol 411:201–219. doi:10.1016/j.jmb.2011.05.040

    Article  MathSciNet  Google Scholar 

  45. Papo N, Silverman AP, Lahti JL, Cochran JR (2011) Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and alphavbeta3 integrin. Proc Natl Acad Sci USA 108:14067–14072. doi:10.1073/pnas.1016635108

    Article  Google Scholar 

  46. Nilvebrant J, Alm T, Hober S, Lofblom J (2011) Engineering bispecificity into a single albumin-binding domain. PLoS ONE 6:e25791. doi:10.1371/Citation

    Article  Google Scholar 

  47. Boersma YL, Chao G, Steiner D et al (2011) Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J Biol Chem 286:41273–41285. doi:10.1074/jbc.M111.293266

    Article  Google Scholar 

  48. Kelly RJ, Billemont B, Rixe O (2009) Renal toxicity of targeted therapies. Targ Oncol 4:121–133. doi:10.1007/s11523-009-0109-x

    Article  Google Scholar 

  49. Caplan MR, Rosca EV (2005) Targeting drugs to combinations of receptors: a modeling analysis of potential specificity. Ann Biomed Eng 33:1113–1124. doi:10.1007/s10439-005-5779-1

    Article  Google Scholar 

  50. Perelson AS (1981) Receptor clustering on a cell surface. III. Theory of receptor cross-linking by multivalent ligands: description by ligand states. Math Biosci 53:1–39

    Article  MATH  MathSciNet  Google Scholar 

  51. Carlson CB, Mowery P, Owen RM et al (2007) Selective tumor cell targeting using low-affinity, multivalent interactions. ACS Chem Biol 2:119–127. doi:10.1021/cb6003788

    Article  Google Scholar 

  52. Cochran JR (2010) Engineered proteins pull double duty. Sci Transl Med. doi:10.1126/scitranslmed.3000276

    Google Scholar 

  53. Robinson MK, Hodge KM, Horak E et al (2008) Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer 99:1415–1425. doi:10.1038/sj.bjc.6604700

    Article  Google Scholar 

  54. Punt CJA, Tol J (2009) More is less—combining targeted therapies in metastatic colorectal cancer. Nat Rev Clin Oncol 6:731–733. doi:10.1038/nrclinonc.2009.168

    Article  Google Scholar 

  55. Kariolis MS, Kapur S, Cochran JR (2013) Beyond antibodies: using biological principles to guide the development of next-generation protein therapeutics. Curr Opin Biotechnol 1–6. doi: 10.1016/j.copbio.2013.03.017

  56. Hill SM (1998) Receptor crosstalk: communication through cell signaling pathways. Anat Rec (New Anat) 253:42–48. doi:10.1002/(SICI)1097-0185(199804)253:2<42:AID-AR7>3.0.CO;2-G

    Article  Google Scholar 

  57. Eliceiri BP (2001) Integrin and growth factor receptor crosstalk. Circ Res 89:1104–1110. doi:10.1161/hh2401.101084

    Article  Google Scholar 

  58. Margadant C, Sonnenberg A (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11:97–105. doi:10.1038/embor.2009.276

    Article  Google Scholar 

  59. Lai AZ, Abella JV, Park M (2009) Crosstalk in Met receptor oncogenesis. Trends Cell Biol 19:542–551. doi:10.1016/j.tcb.2009.07.002

    Article  Google Scholar 

  60. Gusenbauer S, Vlaicu P, Ullrich A (2012) HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene 1–11. doi: 10.1038/onc.2012.396

  61. Zhang Z, Lee JC, Lin L et al (2012) Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44:852–860. doi:10.1038/ng.2330

    Article  Google Scholar 

  62. Wheeler DL, Iida M, Kruser TJ et al (2009) Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther 8:696–703

    Article  Google Scholar 

  63. McNeill H, Woodgett JR (2010) When pathways collide: collaboration and connivance among signalling proteins in development. Nat Rev Mol Cell Biol 11:404–413. doi:10.1038/nrm2902

    Article  Google Scholar 

  64. Stommel JM, Kimmelman AC, Ying H et al (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287–290. doi:10.1126/science.1142946

    Article  Google Scholar 

  65. Kummar S, Chen HX, Wright J et al (2010) Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discovery 9:843–856. doi:10.1038/nrd3216

    Article  Google Scholar 

  66. Dong J, Sereno A, Snyder WB et al (2011) Stable IgG-like bispecific antibodies directed toward the type I insulin-like growth factor receptor demonstrate enhanced ligand blockade and anti-tumor activity. J Biol Chem 286:4703–4717. doi:10.1074/jbc.M110.184317

    Article  Google Scholar 

  67. Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185. doi:10.1007/s10456-009-9141-9

    Article  Google Scholar 

  68. Shankaran H, Wiley HS, Resat H (2007) Receptor downregulation and desensitization enhance the information processing ability of signalling receptors. BMC Syst Biol 1:48. doi:10.1186/1752-0509-1-48

    Article  Google Scholar 

  69. Lauffenburger DA, Linderman JJ (1993) Receptors: models for binding, trafficking, and signaling. Oxford University Press, New York

    Google Scholar 

  70. Boersma YL, Plückthun A (2011) DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol 22:849–857. doi:10.1016/j.copbio.2011.06.004

    Google Scholar 

  71. Spangler JB, Manzari MT, Rosalia EK et al (2012) Triepitopic antibody fusions inhibit cetuximab-resistant BRAF and KRAS mutant tumors via EGFR signal repression. J Mol Biol 422:532–544. doi:10.1016/j.jmb.2012.06.014

    Article  Google Scholar 

  72. Spangler JB, Neil JR, Abramovitch S et al (2010) Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 107:13252–13257. doi:10.1073/pnas.0913476107

    Article  Google Scholar 

  73. Frankel SR, Baeuerle PA (2013) Targeting T cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol 17:1–8. doi:10.1016/j.cbpa.2013.03.029

    Article  Google Scholar 

  74. Schneider B, Grote M, John M et al (2012) Targeted siRNA delivery and mRNA knockdown mediated by bispecific digoxigenin-binding antibodies. Mol Ther Nucleic Acids 1:e46. doi:10.1038/mtna.2012.39

    Article  Google Scholar 

  75. Baek H, Uchida H, Jun K et al (2011) Bispecific adapter-mediated retargeting of a receptor-restricted HSV-1 vector to CEA-bearing tumor cells. Mol Ther 19:507–514. doi:10.1038/mt.2010.207

    Article  Google Scholar 

  76. Lee RJ, Fang Q, Davol PA et al (2007) Antibody targeting of stem cells to infarcted myocardium. Stem cells 25:712–717. doi:10.1634/stemcells.2005-0602

    Article  Google Scholar 

  77. Dreier B, Honegger A, Hess C et al (2013) Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc Natl Acad Sci USA 110:E869–E877. doi:10.1073/pnas.1213653110

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mihalis Kariolis, Cheuk Lun (Alan) Leung, and Shiven Kapur for valuable insight and feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Cochran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Liu, C.J., Cochran, J.R. (2014). Engineering Multivalent and Multispecific Protein Therapeutics. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics