Skip to main content

Alternative Protein Scaffolds for Molecular Imaging and Therapy

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Molecular targeting has tremendous potential to enhance the specificity and sensitivity of diagnostics and the safety and potency of therapeutics, as well as to induce unique and precise biological responses. Effective targeting requires specific binding of appropriate affinity, conjugation of effectors (e.g., toxins, radioisotopes, or fusion proteins) as needed, stable maintenance of activity, and effective delivery physiologically. Ideally, solutions to these challenges will be efficiently implemented for a multitude of molecular targets unique to the relevant pathophysiology. Protein scaffolds, molecular frameworks amenable to local diversity to introduce specific binding while retaining favorable biophysical characteristics, offer an intriguing general solution. While antibodies and their derivatives offer viable options, a host of alternative topologies prove superior in stability, size, production, and/or conjugation. Validated scaffolds include the fibronectin domain, knottin, designed ankyrin repeat protein, anticalin, and affibody among others. These scaffolds have demonstrated efficacy in preclinical animal models and, in some cases, clinical trials in therapy or imaging. These translational developments will be reviewed here. The future is bright for both antibodies and their alternatives. Research should be undertaken to identify the most efficacious scaffold for each individual clinical indication and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287. doi:10.1038/nrc3236

    Article  Google Scholar 

  2. Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    Google Scholar 

  3. Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8:2861–2871. doi:10.1158/1535-7163.MCT-09-0195

    Article  Google Scholar 

  4. Binz HK, Amstutz P, Plückthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23:1257–1268. doi:10.1038/nbt1127

    Article  Google Scholar 

  5. Löfblom J, Frejd FY, Ståhl S (2011) Non-immunoglobulin based protein scaffolds. Curr Opin Biotechnol. doi:10.1016/j.copbio.2011.06.002

    Google Scholar 

  6. Löfblom J, Feldwisch J, Tolmachev V et al (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680. doi:10.1016/j.febslet.2010.04.014

    Article  Google Scholar 

  7. Lipovsek D (2011) Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 24:3–9. doi:10.1093/protein/gzq097

    Article  Google Scholar 

  8. Tamaskovic R, Simon M, Stefan N et al (2012) Designed ankyrin repeat proteins (DARPins) from research to therapy. Meth Enzymol 503:101–134. doi:10.1016/B978-0-12-396962-0.00005-7

    Article  Google Scholar 

  9. Gebauer M, Skerra A (2012) Anticalins small engineered binding proteins based on the lipocalin scaffold. Meth Enzymol 503:157–188. doi:10.1016/B978-0-12-396962-0.00007-0

    Article  Google Scholar 

  10. Moore SJ, Leung CL, Cochran JR (2012) Knottins: disulfide-bonded therapeutic and diagnostic peptides. Drug Discov Today: Technol 9:e3–e11. doi:10.1016/j.ddtec.2011.07.003

    Article  Google Scholar 

  11. Ståhl S, Kronqvist N, Jonsson A, Löfblom J (2012) Affinity proteins and their generation. J Chem Technol Biotechnol 88:25–38. doi:10.1002/jctb.3929

    Article  Google Scholar 

  12. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245–255. doi:10.1016/j.cbpa.2009.04.627

    Article  Google Scholar 

  13. Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252. doi:10.1016/j.jmb.2008.06.051

    Article  Google Scholar 

  14. Batori V, Koide A, Koide S (2002) Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain. Protein Eng 15:1015–1020

    Article  Google Scholar 

  15. Parker MH, Chen Y, Danehy F et al (2005) Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein Eng Des Sel 18:435–444. doi:10.1093/protein/gzi050

    Article  Google Scholar 

  16. Hackel BJ, Wittrup KD (2010) The full amino acid repertoire is superior to serine/tyrosine for selection of high affinity immunoglobulin G binders from the fibronectin scaffold. Protein Eng Des Sel 23:211–219. doi:10.1093/protein/gzp083

    Article  Google Scholar 

  17. Hackel BJ, Ackerman ME, Howland SW, Wittrup KD (2010) Stability and CDR composition biases enrich binder functionality landscapes. J Mol Biol 401:84–96. doi:10.1016/j.jmb.2010.06.004

    Article  Google Scholar 

  18. Koide A, Jordan MR, Horner SR et al (2001) Stabilization of a fibronectin type III domain by the removal of unfavorable electrostatic interactions on the protein surface. Biochemistry 40:10326–10333

    Article  Google Scholar 

  19. Getmanova EV, Chen Y, Bloom L et al (2006) Antagonists to human and mouse vascular endothelial growth factor receptor 2 generated by directed protein evolution in vitro. Chem Biol 13:549–556. doi:10.1016/j.chembiol.2005.12.009

    Article  Google Scholar 

  20. Mamluk R, Carvajal IM, Morse BA et al (2010) Anti-tumor effect of CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2. mAbs, vol 2, pp 199–208

    Google Scholar 

  21. Dineen SP, Sullivan LA, Beck AW et al (2008) The Adnectin CT-322 is a novel VEGF receptor 2 inhibitor that decreases tumor burden in an orthotopic mouse model of pancreatic cancer. BMC Cancer 8:352. doi:10.1186/1471-2407-8-352

    Article  Google Scholar 

  22. Ackermann M, Carvajal IM, Morse BA et al (2011) Adnectin CT-322 inhibits tumor growth and affects microvascular architecture and function in Colo205 tumor xenografts. Int J Oncol 38:71–80. doi:10.3892/ijo_00000825

    Google Scholar 

  23. Waters JD, Sanchez C, Sahin A et al (2012) CT322, a VEGFR-2 antagonist, demonstrates anti-glioma efficacy in orthotopic brain tumor model as a single agent or in combination with temozolomide and radiation therapy. J Neurooncol 110:37–48. doi:10.1007/s11060-012-0948-7

    Article  Google Scholar 

  24. Tolcher AW, Sweeney CJ, Papadopoulos K et al (2011) Phase I and pharmacokinetic study of CT-322 (BMS-844203), a targeted Adnectin inhibitor of VEGFR-2 based on a domain of human fibronectin. Clin Cancer Res 17:363–371. doi:10.1158/1078-0432.CCR-10-1411

    Article  Google Scholar 

  25. Paschold EH, Mazieres J, Lena H et al (2012) A randomized, double-blinded, phase II study of paclitaxel/carboplatin (PC) plus CT-322 versus PC plus bevacizumab (Bev) as first-line treatment for advanced nonsquamous non-small cell lung cancer (NSCLC). J Clin Oncol 30:a7584

    Google Scholar 

  26. Ackermann M, Morse BA, Delventhal V et al (2012) Anti-VEGFR2 and anti-IGF-1R-Adnectins inhibit Ewing’s sarcoma A673-xenograft growth and normalize tumor vascular architecture. Angiogenesis 15:685–695. doi:10.1007/s10456-012-9294-9

    Article  Google Scholar 

  27. Emanuel SL, Engle LJ, Chao G et al. (2011) A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor. mAbs vol 3, pp 38–48

    Google Scholar 

  28. Wang H, Wang L, Cao K et al (2012) Development of a carbon-14 labeling approach to support disposition studies with a pegylated biologic. Drug Metab Dispos 40:1677–1685. doi:10.1124/dmd.112.044792

    Article  Google Scholar 

  29. Spangler JB, Manzari MT, Rosalia EK et al (2012) Triepitopic antibody fusions inhibit cetuximab-resistant BRAF and KRAS mutant tumors via EGFR signal repression. J Mol Biol 422:532–544. doi:10.1016/j.jmb.2012.06.014

    Article  Google Scholar 

  30. Hackel BJ, Kimura RH, Gambhir SS (2012) Use of 64Cu-labeled fibronectin domain with EGFR-overexpressing tumor xenograft: molecular imaging. Radiology 263:179–188. doi:10.1148/radiol.12111504

    Article  Google Scholar 

  31. Hackel BJ, Sathirachinda A, Gambhir SS (2012) Designed hydrophilic and charge mutations of the fibronectin domain: towards tailored protein biodistribution. Protein Eng Des Sel 25:639–647. doi:10.1093/protein/gzs036

    Article  Google Scholar 

  32. Pirie CM, Hackel BJ, Rosenblum MG, Wittrup KD (2011) Convergent potency of internalized gelonin immunotoxins across varied cell lines, antigens, and targeting moieties. J Biol Chem 286:4165–4172. doi:10.1074/jbc.M110.186973

    Article  Google Scholar 

  33. Brautbar A, Ballantyne CM (2011) Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol 8:253–265. doi:10.1038/nrcardio.2011.2

    Article  Google Scholar 

  34. Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43:5965–5975. doi:10.1021/bi049711q

    Article  Google Scholar 

  35. Werle M, Schmitz T, Huang H-L et al (2006) The potential of cystine-knot microproteins as novel pharmacophoric scaffolds in oral peptide drug delivery. J Drug Target 14:137–146. doi:10.1080/10611860600648254

    Article  Google Scholar 

  36. Moore SJ, Cochran JR (2012) Engineering knottins as novel binding agents. Meth Enzymol 503:223–251. doi:10.1016/B978-0-12-396962-0.00009-4

    Article  Google Scholar 

  37. Gracy J, Le-Nguyen D, Gelly J-C et al (2008) KNOTTIN: the knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res 36:D314–D319. doi:10.1093/nar/gkm939

    Article  Google Scholar 

  38. Perez-Pinzon MA, Yenari MA, Sun GH et al (1997) SNX-111, a novel, presynaptic N-type calcium channel antagonist, is neuroprotective against focal cerebral ischemia in rabbits. J Neurol Sci 153:25–31

    Article  Google Scholar 

  39. Joppa MA, Gogas KR, Foster AC, Markison S (2007) Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83-132)) prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. Peptides 28:636–642. doi:10.1016/j.peptides.2006.11.021

    Article  Google Scholar 

  40. Hockaday DC, Shen S, Fiveash J et al (2005) Imaging glioma extent with 131I-TM-601. J Nucl Med 46:580–586

    Google Scholar 

  41. Mamelak AN (2006) Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 24:3644–3650. doi:10.1200/JCO.2005.05.4569

    Article  Google Scholar 

  42. Mrugala MM, Adair JE, Kiem H-P (2012) Outside the box–novel therapeutic strategies for glioblastoma. Cancer J 18:51–58. doi:10.1097/PPO.0b013e318243f785

    Article  Google Scholar 

  43. Veiseh M, Gabikian P, Bahrami S-B et al (2007) Tumor paint: a chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67:6882–6888. doi:10.1158/0008-5472.CAN-06-3948

    Article  Google Scholar 

  44. Sun C, Veiseh O, Gunn J et al (2008) In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 4:372–379. doi:10.1002/smll.200700784

    Article  Google Scholar 

  45. Krause S, Schmoldt H-U, Wentzel A et al (2007) Grafting of thrombopoietin-mimetic peptides into cystine knot miniproteins yields high-affinity thrombopoietin antagonists and agonists. FEBS J 274:86–95. doi:10.1111/j.1742-4658.2006.05567.x

    Article  Google Scholar 

  46. Kimura RH, Levin AM, Cochran FV, Cochran JR (2009) Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 77:359–369. doi:10.1002/prot.22441

    Article  Google Scholar 

  47. Kimura RH, Cheng Z, Gambhir SS, Cochran JR (2009) Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. Cancer Res 69:2435–2442. doi:10.1158/0008-5472.CAN-08-2495

    Article  Google Scholar 

  48. Kimura RH, Miao Z, Cheng Z et al (2010) A dual-labeled knottin peptide for PET and near-infrared fluorescence imaging of integrin expression in living subjects. Bioconjug Chem 21:436–444. doi:10.1021/bc9003102

    Article  Google Scholar 

  49. Miao Z, Ren G, HHongguang L (2009) An engineered knottin peptide labeled with 18F for PET imaging of integrin expression. Bioconjug Chem 20:2342–2347. doi:10.1021/bc900361g

    Article  Google Scholar 

  50. Nielsen CH, Kimura RH, Withofs N et al (2010) PET imaging of tumor neovascularization in a transgenic mouse model with a novel 64Cu-DOTA-knottin peptide. Cancer Res 70:9022–9030. doi:10.1158/0008-5472.CAN-10-1338

    Article  Google Scholar 

  51. Willmann JK, Kimura RH, Deshpande N et al (2010) Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 51:433–440. doi:10.2967/jnumed.109.068007

    Article  Google Scholar 

  52. Silverman AP, Levin AM, Lahti JL, Cochran JR (2009) Engineered cystine-knot peptides that bind alpha(v)beta(3) integrin with antibody-like affinities. J Mol Biol 385:1064–1075. doi:10.1016/j.jmb.2008.11.004

    Article  Google Scholar 

  53. Jiang L, Kimura RH, Miao Z et al (2010) Evaluation of a (64)Cu-labeled cystine-knot peptide based on agouti-related protein for PET of tumors expressing alphavbeta3 integrin. J Nucl Med 51:251–258. doi:10.2967/jnumed.109.069831

    Article  Google Scholar 

  54. Jiang L, Miao Z, Kimura RH et al (2012) 111In-labeled cystine-knot peptides based on the agouti-related protein for targeting tumor angiogenesis. J Biomed Biotechnol 2012:1–8. doi:10.1002/ijc.23575

    Google Scholar 

  55. Jiang H, Moore SJ, Liu S et al (2013) A novel radiofluorinated agouti-related protein for tumor angiogenesis imaging. Amino Acids 44:673–681. doi:10.1007/s00726-012-1391-y

    Article  Google Scholar 

  56. Kimura RH, Teed R, Hackel BJ et al (2012) Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin Cancer Res 18:839–849. doi:10.1158/1078-0432.CCR-11-1116

    Article  Google Scholar 

  57. Hackel BJ, Kimura RH, Miao Z et al (2013) 18F-labeled cystine knot peptides for PET imaging of integrin αvβ6. J Nucl Med 54(7):1101–1105

    Google Scholar 

  58. Jiang L, Miao Z, Kimura RH et al (2011) Preliminary evaluation of (177)Lu-labeled knottin peptides for integrin receptor-targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 38:613–622. doi:10.1007/s00259-010-1684-x

    Article  Google Scholar 

  59. Kimura RH, Jones DS, Jiang L et al (2011) Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLoS ONE 6:e16112. doi:10.1371/journal.pone.0016112

    Article  Google Scholar 

  60. Souriau C, Chiche L, Irving R, Hudson P (2005) New binding specificities derived from Min-23, a small cystine-stabilized peptidic scaffold. Biochemistry 44:7143–7155. doi:10.1021/bi0481592

    Article  Google Scholar 

  61. Zahnd C, Wyler E, Schwenk JM et al (2007) A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J Mol Biol 369:1015–1028. doi:10.1016/j.jmb.2007.03.028

    Article  Google Scholar 

  62. Zahnd C, Kawe M, Stumpp MT et al (2010) Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 70:1595–1605. doi:10.1158/0008-5472.CAN-09-2724

    Article  Google Scholar 

  63. Theurillat J-P, Dreier B, Nagy-Davidescu G et al (2010) Designed ankyrin repeat proteins: a novel tool for testing epidermal growth factor receptor 2 expression in breast cancer. Mod Pathol 23:1289–1297. doi:10.1038/modpathol.2010.103

    Article  Google Scholar 

  64. Münch RC, Mühlebach MD, Schaser T et al (2011) DARPins: an efficient targeting domain for lentiviral vectors. Mol Ther 19:686–693. doi:10.1038/mt.2010.298

    Article  Google Scholar 

  65. Friedrich K, Hanauer JR, Prüfer S et al (2013) DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther. doi:10.1038/mt.2013.16

    Google Scholar 

  66. Martin-Killias P, Patricia M-K, Stefan N et al (2011) A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protein has potent antitumor activity. Clin Cancer Res 17:100–110. doi:10.1158/1078-0432.CCR-10-1303

    Article  Google Scholar 

  67. Wolf S, Souied EH, Mauget-Faysse M et al (2011) Phase I MP0112 wet AMD study: results of a single escalating dose study with DARPin MP0112 in wet AMD. 2011 annual meeting of the association for research in vision and ophthalmology, vol 1655

    Google Scholar 

  68. Campochiaro PA, Channa R, Berger BB et al (2013) Treatment of diabetic macular edema with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am J Ophthalmol 155(697–704):e2. doi:10.1016/j.ajo.2012.09.032

    Google Scholar 

  69. Kim HJ, Eichinger A, Skerra A (2009) High-affinity recognition of lanthanide (III) chelate complexes by a reprogrammed human lipocalin 2. J Am Chem Soc 131:3565–3576. doi:10.1021/ja806857r

    Article  Google Scholar 

  70. Schönfeld D, Matschiner G, Chatwell L et al (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci 106:8198–8203. doi:10.1073/pnas.0813399106

    Article  Google Scholar 

  71. Nunn MA, Sharma A, Paesen GC et al (2005) Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol 174:2084–2091

    Google Scholar 

  72. Halstead SK, Humphreys PD, Zitman FMP et al (2008) C5 inhibitor rEV576 protects against neural injury in an in vitro mouse model of Miller Fisher syndrome. J Peripher Nerv Syst 13:228–235. doi:10.1111/j.1529-8027.2008.00181.x

    Article  Google Scholar 

  73. Soltys J, Kusner LL, Young A et al (2009) Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol 65:67–75. doi:10.1002/ana.21536

    Article  Google Scholar 

  74. Carrera-Marin AL, Romay-Penabad Z, Machin S et al (2011) C5 inhibitor rEV576 ameliorates in vivo effects of antiphospholipid antibodies. Arthritis and Rheumatism 63:S5–S5

    Google Scholar 

  75. Couillin I, Maillet I, Vargaftig BB et al (2004) Arthropod-derived histamine-binding protein prevents murine allergic asthma. J Immunol 173:3281–3286

    Google Scholar 

  76. Ryffel B, Couillin I, Maillet I et al (2005) Histamine scavenging attenuates endotoxin-induced acute lung injury. Ann N Y Acad Sci 1056:197–205. doi:10.1196/annals.1352.034

    Article  Google Scholar 

  77. Hauptman PJ, Kelly RA (1999) Digitalis. Circulation 99:1265–1270

    Article  Google Scholar 

  78. Schlehuber S, Skerra A (2005) Lipocalins in drug discovery: from natural ligand-binding proteins to “anticalins”. Drug Discov Today 10:23–33. doi:10.1016/S1359-6446(04)03294-5

    Article  Google Scholar 

  79. Eyer F, Steimer W, Nitzsche T et al (2012) Intravenous application of an anticalin dramatically lowers plasma digoxin levels and reduces its toxic effects in rats. Toxicol Appl Pharmacol 263:352–359. doi:10.1016/j.taap.2012.07.009

    Article  Google Scholar 

  80. Wurch T, Pierré A, Depil S (2012) Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol 30:575–582. doi:10.1016/j.tibtech.2012.07.006

    Article  Google Scholar 

  81. Mross K, Fischer R, Richly H et al (2011) Abstract A212: first in human phase I study of PRS-050 (Angiocal), a VEGF-A targeting anticalin, in patients with advanced solid tumors: results of a dose escalation study. Mol Cancer Ther 10:A212–A212. doi:10.1158/1535-7163.TARG-11-A212

  82. Steiner M, Gutbrodt K, Krall N, Neri D (2013) Tumor-targeting antibody-anticalin fusion proteins for in vivo pretargeting applications. Bioconjug Chem 24:234–241. doi:10.1021/bc300567a

    Article  Google Scholar 

  83. Lendel C, Dincbas-Renqvist V, Flores A et al (2004) Biophysical characterization of Z(SPA-1)–a phage-display selected binder to protein A. Protein Sci 13:2078–2088. doi:10.1110/ps.04728604

    Article  Google Scholar 

  84. Feldwisch J, Tolmachev V, Lendel C et al (2010) Design of an optimized scaffold for affibody molecules. J Mol Biol 398:232–247. doi:10.1016/j.jmb.2010.03.002

    Article  Google Scholar 

  85. Lundberg E, Brismar H, Gräslund T (2009) Selection and characterization of Affibody ligands to the transcription factor c-Jun. Biotechnol Appl Biochem 52:17–27. doi:10.1042/BA20070178

    Article  Google Scholar 

  86. Nygren P-Å (2008) Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 275:2668–2676. doi:10.1111/j.1742-4658.2008.06438.x

    Article  Google Scholar 

  87. Lindborg M, Cortez E, Höidén-Guthenberg I et al (2011) Engineered high-affinity affibody molecules targeting platelet-derived growth factor receptor β in vivo. J Mol Biol 407:298–315. doi:10.1016/j.jmb.2011.01.033

    Article  Google Scholar 

  88. Kronqvist N, Malm M, Göstring L et al (2011) Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules

    Google Scholar 

  89. Webster JM, Zhang R, Gambhir SS et al (2009) Engineered two-helix small proteins for molecular recognition. ChemBioChem 10:1293–1296. doi:10.1002/cbic.200900062

    Article  Google Scholar 

  90. Ren G, Zhang R, Liu Z et al (2009) A 2-helix small protein labeled with 68 Ga for PET imaging of HER2 expression. J Nucl Med 50:1492–1499. doi:10.2967/jnumed.109.064287

    Article  Google Scholar 

  91. Miao Z, Ren G, Jiang L et al (2011) A novel (18)F-labeled two-helix scaffold protein for PET imaging of HER2-positive tumor. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-011-1879-9

    Google Scholar 

  92. Ahlgren S, Tolmachev V (2010) Radionuclide molecular imaging using Affibody molecules. Curr Pharm Biotechnol 11:581–589

    Article  Google Scholar 

  93. Miao Z, Levi J, Cheng Z (2010) Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids. doi:10.1007/s00726-010-0503-9

    Google Scholar 

  94. Yang M, Cheng K, Qi S et al (2013) Affibody modified and radiolabeled gold-Iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 34:2796–2806. doi:10.1016/j.biomaterials.2013.01.014

    Article  Google Scholar 

  95. Baum RP, Prasad V, Müller D et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68 Ga-labeled affibody molecules. J Nucl Med 51:892–897. doi:10.2967/jnumed.109.073239

    Article  Google Scholar 

  96. Zielinski R, Lyakhov I, Hassan M et al (2011) HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin Cancer Res 17:5071–5081. doi:10.1158/1078-0432.CCR-10-2887

    Article  Google Scholar 

  97. Andersen JT, Pehrson R, Tolmachev V et al (2011) Extending half-life by indirect targeting of the neonatal Fc receptor (FcRn) using a minimal albumin binding domain. J Biol Chem 286:5234–5241. doi:10.1074/jbc.M110.164848

    Article  Google Scholar 

  98. Steffen A-C, Almqvist Y, Chyan M-K et al (2007) Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Oncol Rep 17:1141–1147

    Google Scholar 

  99. Myhre S, Henning P, Friedman M et al (2009) Re-targeted adenovirus vectors with dual specificity; binding specificities conferred by two different Affibody molecules in the fiber. Gene Ther 16:252–261. doi:10.1038/gt.2008.160

    Article  Google Scholar 

  100. Lehmann A (2008) Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery. Expert Opin Biol Ther 8:1187–1199. doi:10.1517/14712598.8.8.1187

    Article  Google Scholar 

  101. Zuraw B, Yasothan U, Kirkpatrick P (2010) Ecallantide. Nat Rev Drug Discov 9:189–190. doi:10.1038/nrd3125

    Article  Google Scholar 

  102. Silverman J, Liu Q, Lu Q et al (2005) Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol 23:1556–1561. doi:10.1038/nbt1166

    Article  Google Scholar 

  103. Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134. doi:10.1038/nm0103-129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Hackel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Hackel, B.J. (2014). Alternative Protein Scaffolds for Molecular Imaging and Therapy. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics