Skip to main content

Engineering Aspects of Bioluminescence Resonance Energy Transfer Systems

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Development of optical probes for sensing biological functions in vivo is in high demand in modern biology. With several inherent advantages, the bioluminescence resonance energy transfer (BRET)-based sensors are rapidly expanding and showing great utilities in the study of protein–protein interactions (PPIs), protein dimerization, signal transduction, etc. Since its inception in the late nineties, BRET-related research has gained significant momentum in terms of adding versatility to the assay format and wider applicability where it has been suitably used. Beyond the scope of quantitative measurement of PPIs and protein dimerization, molecular imaging applications based on BRET assays have broadened its scope for screening pharmacologically important compounds by in vivo imaging and high-throughput screening (HTS) methods. Taking examples from literatures, this chapter will contribute to an in-depth knowledge on engineering requirements of BRET components such as donor, acceptor, substrate chemistry, and instrumentations. BRET applications having significant contributions toward making it an attractive single-format assay are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PPI/PPIs:

Protein–protein interaction(s)

ELISA:

Enzyme-linked Immunosorbent Assay

Y2H:

Yeast two-hybrid assay

IY2H:

Induced Yeast two-hybrid assay

PCAs:

Protein-fragment complementation assays

FRET:

Fluorescence resonance energy transfer

BRET:

Bioluminescence resonance energy transfer

BL:

Bioluminescence

RLuc:

Renilla luciferase

FLuc:

Firefly luciferase

ATP:

Adenosine triphosphate

LH2 :

D-Luciferin substrate for FLuc

AMP:

Adenosine monophosphate

CO2 :

Carbon dioxide

Emmax :

Emission maximum

Clz:

Coelenterazine

RET:

Resonance energy transfer

ERET :

Efficiency of resonance energy transfer

FP/FPs:

Fluorescent protein(s)

GFP:

Green fluorescent protein

EYFP:

Enhanced yellow fluorescent protein

Exmax :

Excitation maximum

Cf :

Correction factor

Clz-h :

Coelenterazine-h

RFP:

Red fluorescent protein

Clz-v :

Coelenterazine-v

CBP:

Coelenterazine-binding protein

RLuc-m:

Renilla muelleri luciferase

BLI:

Bioluminescence imaging

MLuc:

Metridia luciferase

OLuc:

Oplophorus luciferase

CBG:

Click beetle green luciferase

GLuc:

Gaussia luciferase

VLuc:

Vargula luciferase

NLuc:

NanoLuc™

OLuc-19:

19-kDa catalytic domain of OLuc

OLuc-35:

35-kDa stabilizing domain of OLuc

wtGFP:

Wild-type green fluorescent protein

avGFP:

Green fluorescent protein from Aequorea victoria

EGFP:

Enhanced green fluorescent protein

RFP:

Red fluorescent protein

SRET:

Sequential resonance energy transfer

BiFC-BRET:

Bimolecular fluorescence complementation-bioluminescence resonance energy transfer

CODA-RET:

Complemented donor–acceptor resonance energy transfer

BiLC-BiFC:

Bimolecular luminescence complementation-bimolecular fluorescence complementation

NST:

Nocistatin

N/OFQ:

Nociceptin/Orphanin FQ

HIV:

Human immunodeficiency virus

PR:

Protease

HTS:

High-throughput screening

FCV:

Feline calicivirus

RG:

Arginine–glycine peptide

CRET:

Chemiluminescence resonance energy transfer

tdTA:

tdTomato-aequorin system

CaM:

Calmodulin

cpVenus:

Circularly permuted Venus

cpFPs:

Circularly permuted fluorescent proteins

FKBP12:

FK506-binding protein 12

FRB:

FKBP12-Rapamycin-binding domain

mTOR:

Mammalian target of rapamycin

GPCR:

G protein-coupled receptor

CB1R:

Cannabinoid-1 receptor

D2R:

Dopamine D2 receptor

A2AR:

Adenosine A2A receptor

SH2:

Src homology 2 domain

OS-BLIA:

Open sandwich bioluminescent assay

VH :

Variable heavy chain of antibody

VL :

Variable light chain of antibody

Trx:

Thioredoxin

RT-PCR:

Reverse-transcriptase polymerase chain reaction

ARM:

Arginine-rich motifs

BIV:

Bovine immunodeficiency virus

JDV:

Jembrana deficiency virus

NIR:

Near-infrared

QD/QDs:

Quantum dot(s)

MMP-2:

Matrix metalloproteinase-2

MMP-7:

Matrix metalloproteinase-7

uPA:

Urokinase-type plasminogen activator

CLuc:

Cypridina luciferase

FBP:

Far-red bioluminescent protein

Dlk-1:

Delta-like protein-1

C-60:

Carbon-60/Fullerene

PMT:

Photomultiplier tube

BLM:

Bioluminescence microscopy

CCD:

Charge-coupled device

EB-CCD:

Electron bombarded charged coupled device

EMCCD:

Electron multiplying cooled charge-coupled

DR:

Double ratio

References

  1. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3(12):981–983. doi:10.1038/nmeth972

    Google Scholar 

  2. Williams NE (2000) Immunoprecipitation procedures. Methods Cell Biol 62:449–453. doi:10.1016%2FS0091-679X%2808%2961549-6

    Google Scholar 

  3. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59(1):94–123

    Google Scholar 

  4. Rediger A, Tarnow P, Bickenbach A, Schaefer M, Krude H, Gruters A, Biebermann H (2009) Heterodimerization of hypothalamic G-protein-coupled receptors involved in weight regulation. Obes Facts 2(2):80–86. doi:10.1159/000209862

    Google Scholar 

  5. Ciruela F (2008) Fluorescence-based methods in the study of protein–protein interactions in living cells. Curr Opin Biotechnol 19(4):338–343. doi:10.1016/j.copbio.2008.06.003

    Google Scholar 

  6. Ciruela F, Vilardaga JP, Fernandez-Duenas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28(8):407–415. doi:10.1016/j.tibtech.2010.05.002

    Google Scholar 

  7. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246. doi:10.1038/340245a0

    Google Scholar 

  8. Ray P, Pimenta H, Paulmurugan R, Berger F, Phelps ME, Iyer M, Gambhir SS (2002) Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc Natl Acad Sci USA 99(5):3105–3110. doi:10.1073/pnas.052710999

    Google Scholar 

  9. Mohler WA, Blau HM (1996) Gene expression and cell fusion analyzed by lacZ complementation in mammalian cells. Proc Natl Acad Sci USA 93(22):12423–12427

    Google Scholar 

  10. Piehler J (2005) New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 15(1):4–14. doi:10.1016/j.sbi.2005.01.008

    Google Scholar 

  11. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708. doi:10.1126/science.1174269

    Google Scholar 

  12. Seliger HH, Mc EW (1960) Spectral emission and quantum yield of firefly bioluminescence. Arch Biochem Biophys 88:136–141

    Google Scholar 

  13. Koo JA, Schmidt SP, Schuster GB (1978) Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. Proc Natl Acad Sci USA 75(1):30–33

    Google Scholar 

  14. Hoshino H (2009) Current advanced bioluminescence technology in drug discovery. Expert Opin Drug Discov 4(4):373–389. doi:10.1517/17460440902804372

    Google Scholar 

  15. Ohmiya Y (2005) Basic and applied aspects of color tuning of bioluminescence systems. Jpn J Appl Phys 44 (9A):6368–6379. doi:10.1143/jjap.44.6368

    Google Scholar 

  16. Beutler E, Baluda MC (1964) Simplified determination of blood adenosine triphosphate using the firefly system. Blood 23:688–698

    Google Scholar 

  17. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci USA 75(6):2611–2615

    Google Scholar 

  18. van Roessel P, Brand AH (2002) Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat Cell Biol 4(1):E15–E20. doi:10.1038/ncb0102-e15

    Google Scholar 

  19. Forster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:54–75

    Google Scholar 

  20. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    Google Scholar 

  21. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218(1):1–13

    Google Scholar 

  22. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58(2):719–726

    Google Scholar 

  23. De A (2011) The new era of bioluminescence resonance energy transfer technology. Curr Pharm Biotechnol 12(4):558–568

    Google Scholar 

  24. De A, Loening AM, Gambhir SS (2007) An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects. Cancer Res 67(15):7175–7183. doi:10.1158/0008-5472.CAN-06-4623

    Google Scholar 

  25. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 96(1):151–156

    Google Scholar 

  26. Drinovec L, Kubale V, Nohr Larsen J, Vrecl M (2012) Mathematical models for quantitative assessment of bioluminescence resonance energy transfer: application to seven transmembrane receptors oligomerization. Front Endocrinol 3:104. doi:10.3389/fendo.2012.00104

    Google Scholar 

  27. Pfleger KD, Eidne KA (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174. doi:10.1038%2Fnmeth841

    Google Scholar 

  28. Bacart J, Corbel C, Jockers R, Bach S, Couturier C (2008) The BRET technology and its application to screening assays. Biotechnol J 3(3):311–324. doi:10.1002/biot.200700222

    Google Scholar 

  29. Hamdan FF, Percherancier Y, Breton B, Bouvier M (2006) Monitoring protein–protein interactions in living cells by bioluminescence resonance energy transfer (BRET). In: Curr Protoc Neurosci. 2008/04/23 edn. Wiley, pp 5.23.21-25.23.20. doi:10.1002/0471142301.ns0523s34

  30. De A, Ray P, Loening AM, Gambhir SS (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein–protein interactions from single live cells and living animals. FASEB J 23(8):2702–2709. doi:10.1096/fj.08-118919

    Google Scholar 

  31. Dionne P, Mireille C, Labonte A, Carter-Allen K, Houle B, Joly E, Taylor SC, Menard L (2002) BRET2: efficient energy transfer from Renilla Luciferase to GFP2 to measure protein–protein interactions and intracellular signaling events in live cells. In: van Dyke K, van Dyke C, Woodfork K (eds) Luminescence biotechnology: instruments and applications. CRC Press, pp 539–555

    Google Scholar 

  32. Bertrand L, Parent S, Caron M, Legault M, Joly E, Angers S, Bouvier M, Brown M, Houle B, Menard L (2002) The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J Recept Signal Transduct Res 22(1–4):533–541. doi:10.1081/RRS-120014619

    Google Scholar 

  33. Eidne KA, Kroeger KM, Hanyaloglu AC (2002) Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab 13(10):415–421

    Google Scholar 

  34. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97(7):3684–3689. doi:10.1073/pnas.060590697

    Google Scholar 

  35. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19(9):391–400. doi:10.1093/protein/gzl023

    Google Scholar 

  36. Dragulescu-Andrasi A, Chan CT, De A, Massoud TF, Gambhir SS (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects. Proc Natl Acad Sci USA 108(29):12060–12065. doi:10.1073/pnas.1100923108

    Google Scholar 

  37. Caysa H, Jacob R, Muther N, Branchini B, Messerle M, Soling A (2009) A red-shifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging. Photochem Photobiol Sci 8(1):52–56. doi:10.1039/b814566k

    Google Scholar 

  38. Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4(8):641–643. doi:10.1038/nmeth1070

    Google Scholar 

  39. Loening AM, Dragulescu-Andrasi A, Gambhir SS (2010) A red-shifted Renilla luciferase for transient reporter-gene expression. Nat Methods 7(1):5–6. doi:10.1038/nmeth0110-05

    Google Scholar 

  40. Fan F, Wood KV (2007) Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 5(1):127–136. doi:10.1089/adt.2006.053

    Google Scholar 

  41. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857. doi:10.1021/cb3002478

    Google Scholar 

  42. Stepanyuk GA, Unch J, Malikova NP, Markova SV, Lee J, Vysotski ES (2010) Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase. Anal Bioanal Chem 398(4):1809–1817. doi:10.1007/s00216-010-4106-9

    Google Scholar 

  43. Giuliani G, Molinari P, Ferretti G, Cappelli A, Anzini M, Vomero S, Costa T (2012) New red-shifted coelenterazine analogues with an extended electronic conjugation. Tetrahedron Lett 53(38):5114–5118. doi:10.1016/j.tetlet.2012.07.041

    Google Scholar 

  44. Levi J, De A, Cheng Z, Gambhir SS (2007) Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays. J Am Chem Soc 129(39):11900–11901. doi:10.1021/ja073936h

    Google Scholar 

  45. Otto-Duessel M, Khankaldyyan V, Gonzalez-Gomez I, Jensen MC, Laug WE, Rosol M (2006) In vivo testing of Renilla luciferase substrate analogs in an orthotopic murine model of human glioblastoma. Mol Imaging 5(2):57–64. doi:10.2310/7290.2006.00006

    Google Scholar 

  46. Pfleger KD, Dromey JR, Dalrymple MB, Lim EM, Thomas WG, Eidne KA (2006) Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein–protein interactions in live cells. Cell Signal 18(10):1664–1670. doi:10.1016/j.cellsig.2006.01.004

    Google Scholar 

  47. Green AA, McElroy WD (1956) Crystalline firefly luciferase. Biochim Biophys Acta 20(1):170–176

    Google Scholar 

  48. Chiu NH, Christopoulos TK (1999) Two-site expression immunoassay using a firefly luciferase-coding DNA label. Clin Chem 45(11):1954–1959

    Google Scholar 

  49. Arai R, Nakagawa H, Kitayama A, Ueda H, Nagamune T (2002) Detection of protein–protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J Biosci Bioeng 94(4):362–364. doi:10.1263/jbb.94.362

    Google Scholar 

  50. Branchini BR, Rosenberg JC, Ablamsky DM, Taylor KP, Southworth TL, Linder SJ (2011) Sequential bioluminescence resonance energy transfer–fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein. Anal Biochem 414(2):239–245. doi:10.1016/j.ab.2011.03.031

    Google Scholar 

  51. Yamakawa Y, Ueda H, Kitayama A, Nagamune T (2002) Rapid homogeneous immunoassay of peptides based on bioluminescence resonance energy transfer from firefly luciferase. J Biosci Bioeng 93(6):537–542. doi:10.1016/S1389-1723(02)80234-1

    Google Scholar 

  52. Branchini BR, Rosenberg JC, Ablamsky DM, Taylor KP, Southworth TL, Linder SJ (2011) Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein. Anal Biochem 414(2):239–245. doi:10.1016/j.ab.2011.03.031

    Google Scholar 

  53. Branchini BR, Ablamsky DM, Davis AL, Southworth TL, Butler B, Fan F, Jathoul AP, Pule MA (2010) Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem 396(2):290–297. doi:10.1016/j.ab.2009.09.009

    Google Scholar 

  54. Naumov P, Ozawa Y, Ohkubo K, Fukuzumi S (2009) Structure and spectroscopy of oxyluciferin, the light emitter of the firefly bioluminescence. J Am Chem Soc 131(32):11590–11605. doi:10.1021/ja904309q

    Google Scholar 

  55. Takenaka Y, Masuda H, Yamaguchi A, Nishikawa S, Shigeri Y, Yoshida Y, Mizuno H (2008) Two forms of secreted and thermostable luciferases from the marine copepod crustacean. Metridia pacifica Gene 425(1–2):28–35. doi:10.1016/j.gene.2008.07.041

    Google Scholar 

  56. Markova SV, Burakova LP, Vysotski ES (2012) High-active truncated luciferase of copepod Metridia longa. Biochem Biophys Res Commun 417(1):98–103. doi:10.1016/j.bbrc.2011.11.063

    Google Scholar 

  57. Inouye S, Watanabe K, Nakamura H, Shimomura O (2000) Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase(1). FEBS Lett 481(1):19–25

    Google Scholar 

  58. Gammon ST, Villalobos VM, Roshal M, Samrakandi M, Piwnica-Worms D (2009) Rational design of novel red-shifted BRET pairs: platforms for real-time single-chain protease biosensors. Biotechnol Prog 25(2):559–569. doi:10.1002/btpr.144

    Google Scholar 

  59. Li F, Yu J, Zhang Z, Cui Z, Wang D, Wei H, Zhang XE (2012) Buffer enhanced bioluminescence resonance energy transfer sensor based on Gaussia luciferase for in vitro detection of protease. Anal Chim Acta 724:104–110. doi:10.1016/j.aca.2012.02.047

    Google Scholar 

  60. Otsuji T, Okuda-Ashitaka E, Kojima S, Akiyama H, Ito S, Ohmiya Y (2004) Monitoring for dynamic biological processing by intramolecular bioluminescence resonance energy transfer system using secreted luciferase. Anal Biochem 329(2):230–237. doi:10.1016/j.ab.2004.03.010

    Google Scholar 

  61. Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11(3):435–443. doi:10.1016/j.ymthe.2004.10.016

    Google Scholar 

  62. Thompson EM, Nagata S, Tsuji FI (1989) Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proc Natl Acad Sci USA 86(17):6567–6571

    Google Scholar 

  63. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. doi:10.1038/nmeth819

    Google Scholar 

  64. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    Google Scholar 

  65. Wang Y, Shyy JY, Chien S (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 10:1–38. doi:10.1146/annurev.bioeng.010308.161731

    MATH  Google Scholar 

  66. Muller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77(1):1–12. doi:10.1007/s00253-007-1131-5

    Google Scholar 

  67. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194. doi:10.1074/jbc.M102815200

    Google Scholar 

  68. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90. doi:10.1038/nbt0102-87

    Google Scholar 

  69. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23(3):355–360. doi:10.1038/nbt1066

    Google Scholar 

  70. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973. doi:10.1038/13657

    Google Scholar 

  71. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97(22):11984–11989. doi:10.1073/pnas.97.22.11984

    Google Scholar 

  72. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99(12):7877–7882. doi:10.1073/pnas.082243699

    Google Scholar 

  73. Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20(1):83–87. doi:10.1038/nbt0102-83

    Google Scholar 

  74. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. doi:10.1038/nbt1037

    Google Scholar 

  75. Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101(48):16745–16749. doi:10.1073/pnas.0407752101

    Google Scholar 

  76. Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4(7):555–557. doi:10.1038/nmeth1062

    Google Scholar 

  77. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4(9):741–746. doi:10.1038/nmeth1083

    Google Scholar 

  78. Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418(3):567–574. doi:10.1042/BJ20081949

    Google Scholar 

  79. Morozova KS, Piatkevich KD, Gould TJ, Zhang J, Bewersdorf J, Verkhusha VV (2010) Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys J 99(2):L13–L15. doi:10.1016/j.bpj.2010.04.025

    Google Scholar 

  80. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi:10.1146/annurev.biochem.67.1.509

    Google Scholar 

  81. Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381(Pt 1):307–312. doi:10.1042/BJ20040321

    Google Scholar 

  82. Carriba P, Navarro G, Ciruela F, Ferre S, Casado V, Agnati L, Cortes A, Mallol J, Fuxe K, Canela EI, Lluis C, Franco R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5(8):727–733. doi:10.1038/nmeth.1229

    Google Scholar 

  83. Navarro G, Aymerich MS, Marcellino D, Cortes A, Casado V, Mallol J, Canela EI, Agnati L, Woods AS, Fuxe K, Lluis C, Lanciego JL, Ferre S, Franco R (2009) Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. J Biol Chem 284(41):28058–28068. doi:10.1074/jbc.M109.034231

    Google Scholar 

  84. Heroux M, Hogue M, Lemieux S, Bouvier M (2007) Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. J Biol Chem 282(43):31610–31620. doi:10.1074/jbc.M701790200

    Google Scholar 

  85. Navarro G, Carriba P, Gandia J, Ciruela F, Casado V, Cortes A, Mallol J, Canela EI, Lluis C, Franco R (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Sci World J 8:1088–1097. doi:10.1100/tsw.2008.136

    Google Scholar 

  86. Urizar E, Yano H, Kolster R, Gales C, Lambert N, Javitch JA (2011) CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat Chem Biol 7(9):624–630. doi:10.1038/nchembio.623

    Google Scholar 

  87. Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27(17):2293–2304. doi:10.1038/emboj.2008.153

    Google Scholar 

  88. Hu K, Clement JF, Abrahamyan L, Strebel K, Bouvier M, Kleiman L, Mouland AJ (2005) A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. J Virol Methods 128(1–2):93–103. doi:10.1016/j.jviromet.2005.04.012

    Google Scholar 

  89. Oka T, Takagi H, Tohya Y, Murakami K, Takeda N, Wakita T, Katayama K (2011) Bioluminescence technologies to detect calicivirus protease activity in cell-free system and in infected cells. Antiviral Res 90(1):9–16. doi:10.1016/j.antiviral.2011.02.002

    Google Scholar 

  90. Dacres H, Dumancic MM, Horne I, Trowell SC (2009) Direct comparison of bioluminescence-based resonance energy transfer methods for monitoring of proteolytic cleavage. Anal Biochem 385(2):194–202. doi:10.1016/j.ab.2008.10.040

    Google Scholar 

  91. Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brulet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS ONE 2(10):e974. doi:10.1371/journal.pone.0000974

    Google Scholar 

  92. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97(13):7260–7265. doi:10.1073/pnas.97.13.7260

    Google Scholar 

  93. Bakayan A, Vaquero CF, Picazo F, Llopis J (2011) Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice. PLoS ONE 6(5):e19520. doi:10.1371/journal.pone.0019520

    Google Scholar 

  94. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887. doi:10.1038/42264

    Google Scholar 

  95. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96(5):2135–2140

    Google Scholar 

  96. Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+ -dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem 272(20):13270–13274

    Google Scholar 

  97. Saito K, Hatsugai N, Horikawa K, Kobayashi K, Matsu-Ura T, Mikoshiba K, Nagai T (2010) Auto-luminescent genetically-encoded ratiometric indicator for real-time Ca2+ imaging at the single cell level. PLoS ONE 5(4):e9935. doi:10.1371/journal.pone.0009935

    Google Scholar 

  98. De A, Gambhir SS (2005) Noninvasive imaging of protein–protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J 19(14):2017–2019. doi:10.1096/fj.05-4628fje

    Google Scholar 

  99. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348. doi:10.1038/nrc1362

    Google Scholar 

  100. Kroeger KM, Hanyaloglu AC, Seeber RM, Miles LE, Eidne KA (2001) Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem 276(16):12736–12743. doi:10.1074/jbc.M011311200

    Google Scholar 

  101. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277(47):44925–44931. doi:10.1074/jbc.M205767200

    Google Scholar 

  102. Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 277(24):21522–21528. doi:10.1074/jbc.M200729200

    Google Scholar 

  103. Pfleger KD, Eidne KA (2005) Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 385(Pt 3):625–637. doi:10.1042/BJ20041361

    Google Scholar 

  104. Boute N, Pernet K, Issad T (2001) Monitoring the activation state of the insulin receptor using bioluminescence resonance energy transfer. Mol Pharmacol 60(4):640–645

    Google Scholar 

  105. Issad T, Blanquart C, Gonzalez-Yanes C (2007) The use of bioluminescence resonance energy transfer for the study of therapeutic targets: application to tyrosine kinase receptors. Exp Opin Ther Targets 11(4):541–556. doi:10.1517/14728222.11.4.541

    Google Scholar 

  106. Tan PK, Wang J, Littler PL, Wong KK, Sweetnam TA, Keefe W, Nash NR, Reding EC, Piu F, Brann MR, Schiffer HH (2007) Monitoring interactions between receptor tyrosine kinases and their downstream effector proteins in living cells using bioluminescence resonance energy transfer. Mol Pharmacol 72(6):1440–1446. doi:10.1124/mol.107.039636

    Google Scholar 

  107. Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20(3):287–294

    Google Scholar 

  108. Schroder M, Kroeger KM, Volk HD, Eidne KA, Grutz G (2004) Preassociation of nonactivated STAT3 molecules demonstrated in living cells using bioluminescence resonance energy transfer: a new model of STAT activation? J Leukoc Biol 75(5):792–797. doi:10.1189/jlb.1003496

    Google Scholar 

  109. Arai R, Nakagawa H, Tsumoto K, Mahoney W, Kumagai I, Ueda H, Nagamune T (2001) Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer. Anal Biochem 289(1):77–81. doi:10.1006/abio.2000.4924

    Google Scholar 

  110. Walls ZF, Gambhir SS (2008) BRET-based method for detection of specific RNA species. Bioconjug Chem 19(1):178–184. doi:10.1021/bc700278n

    Google Scholar 

  111. Andou T, Endoh T, Mie M, Kobatake E (2011) Development of an RNA detection system using bioluminescence resonance energy transfer. Sensor Actuat B Chem 152(2):277–284. doi:10.1016/j.snb.2010.12.020

    Google Scholar 

  112. So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24(3):339–343. doi:10.1038/nbt1188

    Google Scholar 

  113. Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9):7266–7286. doi:10.3390/s90907266

    Google Scholar 

  114. Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J (2008) Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal Chem 80(22):8649–8655. doi:10.1021/ac801562f

    Google Scholar 

  115. Kumar M, Zhang D, Broyles D, Deo SK (2011) A rapid, sensitive, and selective bioluminescence resonance energy transfer (BRET)-based nucleic acid sensing system. Biosens Bioelectron 30(1):133–139. doi:10.1016/j.bios.2011.08.043

    Google Scholar 

  116. Wu C, Mino K, Akimoto H, Kawabata M, Nakamura K, Ozaki M, Ohmiya Y (2009) In vivo far-red luminescence imaging of a biomarker based on BRET from Cypridina bioluminescence to an organic dye. Proc Natl Acad Sci USA 106(37):15599–15603. doi:10.1073/pnas.0908594106

    Google Scholar 

  117. Branchini BR, Ablamsky DM, Rosenberg JC (2010) Chemically modified firefly luciferase is an efficient source of near-infrared light. Bioconjug Chem 21(11):2023–2030. doi:10.1021/bc100256d

    Google Scholar 

  118. Yu J, Guan M, Li F, Zhang Z, Wang C, Shu C, Wei H, Zhang XE (2012) Effects of fullerene derivatives on bioluminescence and application for protease detection. Chem Commun 48(89):11011–11013. doi:10.1039/c2cc36099c

    Google Scholar 

  119. Xu X, Soutto M, Xie Q, Servick S, Subramanian C, von Arnim AG, Johnson CH (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci USA 104(24):10264–10269. doi:10.1073/pnas.0701987104

    Google Scholar 

  120. Coulon V, Audet M, Homburger V, Bockaert J, Fagni L, Bouvier M, Perroy J (2008) Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys J 94(3):1001–1009. doi:10.1529/biophysj.107.117275

    Google Scholar 

Download references

Acknowledgments

Funding support to AD from DBT Bioengineering, New Delhi and ACTREC, TMC, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

De, A., Arora, R., Jasani, A. (2014). Engineering Aspects of Bioluminescence Resonance Energy Transfer Systems. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics