Skip to main content

Abstract

As the reference of all human-centered products, digital human bodies are reconstructed from scanning data which are usually presented in the form of three-dimensional (3D) sample points. To support design automation, the scanned human bodies represented by point clouds need to be converted into surface representation. Feature points that are defined according to particular applications can be extracted from the surfaces. After that, cross-parameterization constrained by the feature points is conducted to establish a point-to-point correspondence between human bodies. Models with a consistent mesh connectivity which help the shape space analysis for human bodies can then be obtained. The statistical model established by the human bodies with a consistent mesh can be further used to correlate the shape of human bodies with semantic parameters. Such a correlation provides a method to synthesize human bodies by parametric inputs (named as parametric design of human bodies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On a 2D polygon, if the positions of three adjacent points \(\mathbf p _{i-1}\), \(\mathbf p _{i}\), and \(\mathbf p _{i+1}\) make the value of angle \(\angle \mathbf p _{i-1}\) \(\mathbf p _{i}\) \(\mathbf p _{i+1}\) smaller than a threshold, \(\mathbf p _{i}\) is considered as a turning point.

References

  1. Alexopoulos, K., Mavrikios, D., Pappas, M., Ntelis, E., Chryssolouris, G.: Multi-criteria upper body human motion adaptation. Int. J. Comput. Integr. Manuf. 20, 57–70 (2007)

    Article  Google Scholar 

  2. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 587–594 (2003)

    Article  Google Scholar 

  3. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)

    Article  Google Scholar 

  4. Amenta, N., Bern, M., Kamvysselis, M.: A new voronoi-based surface reconstruction algorithm. In: Proceedings of SIGGRAPH’98, pp. 415–421 (1998)

    Google Scholar 

  5. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 249–266 (2001)

    Google Scholar 

  6. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24, 408–416 (2005)

    Article  Google Scholar 

  7. Baek, S.Y., Lee, K.: Parametric human body shape modeling framework for human-centered product design. Comput. Aided Des. 44(1), 56–67 (2012)

    Article  Google Scholar 

  8. Bernardini, F., Rushmeier, H.E.: The 3d model acquisition pipeline. Comput. Graph. Forum 21(2), 149–172 (2002)

    Article  Google Scholar 

  9. Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5, 341–355 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 185–192 (2004)

    Google Scholar 

  11. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH 2001, pp. 67–76 (2001)

    Google Scholar 

  12. Chu, C.H., Tsai, Y.T., Wang, C.C.L., Kwok, T.H.: Exemplar-based statistical model for semantic parametric design of human body. Comput. Ind. 61, 541–549 (2010)

    Article  Google Scholar 

  13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (2nd edn). MIT Press, Cambridge (2001)

    Google Scholar 

  14. Dey, T.K., Giesen, J., Hudson, J.: Delaunay based shape reconstruction from large data. In: Proceedings of the IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics, pp. 19–27 (2001)

    Google Scholar 

  15. Dey, T.K., Goswami, S.: Tight Co Cone: a water-tight surface reconstructor. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, pp. 127–134 (2003)

    Google Scholar 

  16. Dinh, H.Q., Turk, G., Slabaugh, G.: Reconstructing surfaces by volumetric regularization using radial basis functions. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1358–1371 (2002)

    Article  Google Scholar 

  17. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: SIGGRAPH ’95: ACM SIGGRAPH 1995 Papers, pp. 173–182 (1995)

    Google Scholar 

  18. Fang, C.W., Lien, J.J.J.: Rapid image completion system using multiresolution patch-based directional and nondirectional approaches. IEEE Trans. Img. Proc. 18, 2769–2779 (2009)

    Article  MathSciNet  Google Scholar 

  19. Floater, M.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Floater, M.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gatzke, T., Grimm, C., Garland, M., Zelinka, S.: Curvature maps for local shape comparison. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 246–255. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  22. Guennebaud, G., Barthe, L., Paulin, M.: Interpolatory refinement for real-time processing of point-based geometry. Comput. Graph. Forum (Proc. Eurograph. 2005) 24, 657–666 (2005)

    Google Scholar 

  23. Guennebaud, G., Gross, M.: Algebraic point set surfaces. ACM Trans. Graph. 26, 23:1–23:8 (2007)

    Google Scholar 

  24. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model of human pose and body shape. Comput. Graph. Forum (Proc. Eurograph. 2009) 28, 337–346 (2009)

    Google Scholar 

  25. Hoffmann, C.: Geometric and Solid Modeling, Chapter 4: Robust and Error-Free Geometric Operations. http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html (2002)

  26. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26, 71–78 (1992)

    Article  Google Scholar 

  27. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 19–26 (1993)

    Google Scholar 

  28. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3d models from non-uniformly sampled point clouds without normal information. In: Proceedings of ACM Symposium on Geometry Processing, pp. 41–50 (2006)

    Google Scholar 

  29. Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D.: Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. 28, 176:1–176:7 (2009)

    Google Scholar 

  30. Jain, V., Zhang, H.: Robust 3d shape correspondence in the spectral domain. In: SMI ’06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, p. 19. IEEE Computer Society, Washington, DC, USA (2006). doi:http://dx.doi.org/10.1109/SMI.2006.31

  31. Jolliffe, I.: Principle Component Analysis, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  32. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Graph. 21, 339–346 (2002)

    Article  Google Scholar 

  33. Karni, Z., Gotsman, C., Gortler, S.J.: Free-boundary linear parameterization of 3d meshes in the presence of constraints. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 268–277. IEEE Computer Society (2005)

    Google Scholar 

  34. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 61–70 (2006)

    Google Scholar 

  35. Khodakovsky, A., Litke, N., Schröder, P.: Globally smooth parameterizations with low distortion. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pp. 350–357 (2003)

    Google Scholar 

  36. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. U S A 95, 8431–8435 (1998)

    Google Scholar 

  37. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. 23(3), 861–869 (2004)

    Article  Google Scholar 

  38. Kuo, C.C., Yau, H.T.: A new combinatorial approach to surface reconstruction with sharp features. IEEE Trans. Vis. Comput. Graph. 12, 73–82 (2006)

    Article  Google Scholar 

  39. Kutulakos, K.N., Steger, E.: A theory of refractive and specular 3d shape by light-path triangulation. Int. J. Comput. Vis. 76, 13–29 (2008)

    Article  Google Scholar 

  40. Kwok, T.H., Zhang, Y., Wang, C.C.L.: Constructing common base domain by cues from Voronoi diagram. Graph. Model.

    Google Scholar 

  41. Kwok, T.H., Zhang, Y., Wang, C.C.L.: Efficient optimization of common base domains for cross-parameterization. IEEE Trans. Vis. Comput. Graph.

    Google Scholar 

  42. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. In: Proceedings of International Conference on Robotics and Automation, pp. 3719–3726 (2000)

    Google Scholar 

  43. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3d scanning of large statues. In: Proceedings of SIGGRAPH 2000, pp. 131–144 (2000)

    Google Scholar 

  44. Li, S.S.M., Wang, C.C.L., Hui, K.C.: Bending-invariant correspondence matching on 3d human bodies for feature point extraction. IEEE Trans. Autom. Sci. Eng. 8(4), 805–814 (2011)

    Article  Google Scholar 

  45. Li, W.C., Levy, B., Paul, J.C.: Mesh editing with an embedded network of curves. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 62–71. IEEE Computer Society (2005)

    Google Scholar 

  46. Li, X., Bao, Y., Guo, X., Jin, M., Gu, X., Qin, H.: Globally optimal surface mapping for surfaces with arbitrary topology. IEEE Trans. Vis. Comput. Graph. 14(4), 805–819 (2008)

    Article  Google Scholar 

  47. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM Trans. Graph. 28, 72:1–72:12 (2009)

    Google Scholar 

  48. Liu, S., Chan, K.C., Wang, C.C.L.: Iterative consolidation of unorganized points. IEEE Comput. Graph. Appl. 32, 70–83 (2012)

    Article  Google Scholar 

  49. Liu, S., Wang, C.C.L.: Orienting unorganized points for surface reconstruction. Comput. Graph. 34, 209–218 (2010)

    Article  Google Scholar 

  50. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)

    Article  Google Scholar 

  51. Mederos, B., Amenta, N., Velho, L., de Figueiredo, L.H.: Surface reconstruction from noisy point clouds. In: Proceedings of the Third Eurographics Symposium on Geometry Processing (2005)

    Google Scholar 

  52. Mello, V.c., Velho, L., Taubin, G.: Estimating the in/out function of a surface represented by points. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, pp. 108–114 (2003)

    Google Scholar 

  53. Moenning, C., Dodgson, N.: Fast marching farthest point sampling. In: Proceedings of Eurographics (2003)

    Google Scholar 

  54. Mortenson, M.E.: Geometric Modeling. Wiley, New York (1997)

    Google Scholar 

  55. Mount, D., Arya, S.: ANN: a Library for Approximate Nearest Neighbor Searching. http://www.cs.umd.edu/mount/ANN/ (2006)

  56. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22, 463–470 (2003)

    Article  Google Scholar 

  57. Ohtake, Y., Belyaev, A., Seidel, H.P.: An integrating approach to meshing scattered point data. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 61–69 (2005)

    Google Scholar 

  58. Ohtake, Y., Belyaev, A., Seidel, H.P.: 3D scattered data interpolation and approximation with multilevel compactly supported rbfs. Graph. Model. 67, 150–165 (2005)

    Article  MATH  Google Scholar 

  59. Peng, T., Gupta, S.K.: Model and algorithms for point cloud construction using digital projection patterns. J. Comput. Inf. Sci. Eng. 7, 372–381 (2007)

    Article  Google Scholar 

  60. Pietroni, N., Tarini, M., Cignoni, P.: Almost isometric mesh parameterization through abstract domains. IEEE Trans. Vis. Comput. Graph. 16(4), 621–635 (2010)

    Article  Google Scholar 

  61. Praun, E., Sweldens, W., Schröder, P.: Consistent mesh parameterizations. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 179–184 (2001)

    Google Scholar 

  62. Quan, L.: Image-Based Modeling. Springer, Berlin (2010)

    Google Scholar 

  63. Ray, N., Li, W., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2006)

    Article  Google Scholar 

  64. Rotman, J.: An Introduction to Algebraic Geometry. Springer, Berlin (1988)

    Google Scholar 

  65. Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH ’01: ACM SIGGRAPH 2001, pp. 409–416 (2001)

    Google Scholar 

  66. Scherbaum, K., Sunkel, M., Seidel, H.P., Blanz, V.: Prediction of individual non-linear aging trajectories of faces. Comput. Graph. Forum 26, 285–294 (2007)

    Article  Google Scholar 

  67. Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)

    Article  Google Scholar 

  68. Seo, H., Magnenat-Thalmann, N.: An example-based approach to human body manipulation. Graph. Model. 66, 1–23 (2004)

    Article  MATH  Google Scholar 

  69. Shapiro, L., Brady, J.: Feature-based correspondence: an eigenvector approach. Image Vis. Comput. 10(5), 283–288 (1992)

    Article  Google Scholar 

  70. Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., Cohen-Or, D.: Competing fronts for coarse-to-fine surface reconstruction. Comput. Graph. Forum (Proc. Eurograph. 2006) 25, 389–398 (2006)

    Google Scholar 

  71. Sharf, A., Lewiner, T., Shklarski, G., Toledo, S., Cohen-Or, D.: Interactive topology-aware surface reconstruction. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 49:1–49:9 (2007)

    Google Scholar 

  72. Sheffer, A., Levy, B., Mogilnitsky, M., Bogomyakov, A.: ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24, 311–330 (2005)

    Article  Google Scholar 

  73. Solinger, J.: Apparel Manufacturing Handbook: Analysis, Principles, and Practice. Bobbin Media Corp, Columbia (1988)

    Google Scholar 

  74. Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 20–30 (2003)

    Google Scholar 

  75. Taylor, P.J., Shoben, M.M.: Grading for the Fashion Industry: the Theory and Practice. England Thornes, Cheltenham (1990)

    Google Scholar 

  76. Turk, G., O’brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21, 855–873 (2002)

    Article  Google Scholar 

  77. Wang, C.C.L.: Cyber Tape: an interactive measurement tool on polyhedral surface. Comput. Graph. 28(5), 731–745 (2004)

    Article  Google Scholar 

  78. Wang, C.C.L.: Parameterization and parametric design of mannequins. Comput. Aided Des. 37, 83–98 (2005)

    Article  Google Scholar 

  79. Wang, C.C.L.: Computing length-preserved free boundary for quasi-developable mesh segmentation. IEEE Trans. Vis. Comp. Graph. 14(1), 25–36 (2008)

    Google Scholar 

  80. Wang, C.C.L., Chang, T.K.K., Yuen, M.M.F.: From laser-scanned data to feature human model: a system based on fuzzy logic concept. Comput. Aided Des. 35, 241–253 (2003)

    Article  Google Scholar 

  81. Wang, C.C.L., Hui, K.C., Tong, K.M.: Volume parameterization for design automation of customized free-form products. IEEE Trans. Autom. Sci. Eng. 4(1), 11–21 (2007)

    Article  Google Scholar 

  82. Wang, Y., Wang, C.C.L., Yuen, M.M.F.: Duplicate-skins for compatible mesh modelling. In: SPM ’06: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, pp. 207–217 (2006)

    Google Scholar 

  83. Yngve, G., Turk, G.: Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Vis. Comput. Graph. 8, 346–359 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlie C. L. Changling Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wang, C.C.L.C. (2013). Digital Human Body. In: Geometric Modeling and Reasoning of Human-Centered Freeform Products. Springer, London. https://doi.org/10.1007/978-1-4471-4360-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4360-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4359-8

  • Online ISBN: 978-1-4471-4360-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics