Skip to main content

How Does Shock Wave Break Stones

  • Chapter
  • First Online:
  • 1686 Accesses

Abstract

The introduction of new lithotripters increased problems of shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling and application have appeared, that may address some of these problems.

The theory of dynamic squeezing offers new insight in stone fragmentation. With the water cushion, quality of coupling has become a critical factor depending on amount, viscosity and temperature of coupling gel. Fluoroscopy time can be reduced by automated localization or the use of optical and acoustic tracking systems. Efficacy of ESWL can be increased by lowering the pulse rate to 60–80 SW/min and by ramping the SW-energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980;2:1265–8.

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs G, Miller K, Rassweiler J, Eisenberger F. Extracorporeal shock wave lithotripsy: one-year experience with the Dornier lithotripter. Eur Urol. 1985;11:145–9.

    CAS  PubMed  Google Scholar 

  3. Rassweiler JJ, Renner C, Chaussy C, Thüroff S. Treatment of renal stones by extracorporeal shock wave lithotripsy. Eur Urol. 2001;39:187–99.

    Article  CAS  PubMed  Google Scholar 

  4. Rassweiler JJ, Tailly GG, Chaussy C. Progress in lithotriptor technology. EAU Update Ser. 2005;3:17–36.

    Article  Google Scholar 

  5. Lingeman JE, McAteer JA, Gnessin E, Evan AP. Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol. 2009;6:660–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Knoll T, Alken P. Beyond ESWL: new concepts for definitive stone removal. World J Urol. 2011;29:703–4.

    Article  PubMed  Google Scholar 

  7. Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Linegman JE, Cleveland RO, Bailey MR, Chaussy C. Shock wave technology and application – an update. Eur Urol. 2011;59:784–96.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lokhandwalla M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol. 2000;45:1923–40.

    Article  CAS  PubMed  Google Scholar 

  9. Zhong P, Xi XF, Zhu SL, Cocks FH, Preminger GM. Recent developments in SWL physics research. J Endourol. 1999;13:611–7.

    Article  CAS  PubMed  Google Scholar 

  10. Crum LA. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol. 1988;140:1587–90.

    CAS  PubMed  Google Scholar 

  11. Eisenmenger W. The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol. 2001;27:683–93.

    Article  CAS  PubMed  Google Scholar 

  12. Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR. A mechanisrtic analysis of stone fracture in lithotripsy. J Acoust Soc Am. 2007;121:1190–202.

    Article  PubMed  Google Scholar 

  13. Delius M, Brendel W. A mechanism of gallstone destruction by extracorporeal shock waves. Naturwissenschaften. 1988;75:200–1.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Cocks FH, Preminger GM, Zhong P. Innovation in shock wave lithotripsy technology: updates in experimental studies. J Urol. 2004;172:1892–8.

    Article  PubMed  Google Scholar 

  15. Duryea AP, Roberts WW, Cain CA, Faerber GJ, Hollingsworth JM, Wolf Jr JS, Hall TL. Rapid extracorporeal stone erosion. J Endourol. 2011;25(Suppl):A9 (abstract BR02-12).

    Google Scholar 

  16. Pishalnikov YA, Sapozhnikov OA, Williams Jr JC, Evan AP, McAteer RO, Cleveland RO, Colonius T, Bailey MR, Crum LA. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shock waves. J Endourol. 2003;17:435–46.

    Article  Google Scholar 

  17. Cleveland RO, Sapozhnikov OA. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am. 2005;118:2667–76.

    Article  PubMed  Google Scholar 

  18. Pishchalnikov YA, McAteer R, VonderHaar J, Pishchalnikova IV, Williams JC, Evan AP. Detection of significant variation in acoustic output of an electromagnetic lithotripter. J Urol. 2006;176:2294–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A. The first clinical results of “wide focus and low-pressure” ESWL. Ultrasound Med Biol. 2002;28:769–74.

    Article  CAS  PubMed  Google Scholar 

  20. Evan AP, McAteer JA, Connors BA, Pishchalnikov YA, Handa RK, Blomgren P, Willis LR, Williams Jr JC, Lingeman JE, Gao S. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int. 2007;101:382–8.

    Article  PubMed  Google Scholar 

  21. Rassweiler J, Fritsche H-M, Tailly G, Klein J, Laguna P, Chaussy C. Shock wave lithotripsy in the year 2012. In: Knoll T, Pearle MS, editors. Clinical management of urolithiasis. New York: Springer; 2012. p. 51–75.

    Google Scholar 

  22. Neisius A, Smith NB, Sankin G, Kuntz NJ, Madden JF, Fovargue DE, Mitran S, Lipkin ME, Simmons WN, Preminger GM, Zhong P. Improving the lens design and performance of a contemporary electromagnetic shock wave lithortripter. Proc Natl Acad Sci USA. 2014;111:E1167–75; Epub Mar 17 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pishchalnikov YA, Neucks JS, Von der Haar RJ, Pishchalnikova IV, Williams JC, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol. 2006;176:2706–10.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bohris C. Quality of coupling in ESWL significantly affect the disintegration capacity – how to achieve good coupling with ultrasound gel. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU, editors. Therapeutic energy applications in urology II. Standards and recent developments. Stuttgart/New York: Thieme; 2010. p. 61–4.

    Google Scholar 

  25. Jain A, Shah TK. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol. 2007;51:1680–7.

    Article  PubMed  Google Scholar 

  26. Neucks JS, Pishchalnikov YA, Zancanaro AJ, von der Haar JN, Williams JC, McAteer JA. Improved acoustic coupling for shock wave lithotripsy. Urol Res. 2008;36:61–6.

    Article  PubMed  Google Scholar 

  27. Bohris C, Roosen A, Dickmann M, Hocaoglu Y, Sandner S, Bader M, Stief CG, Walther S. Monitoring the coupling of the lithotripter head with skin during routine shock wave lithotripsy with a surveillance camera. J Urol. 2011;187(1):157–63.

    Article  PubMed  Google Scholar 

  28. Cleveland RO, Anglade R, Babayan RK. Effect of stone motion on in vitro comminution efficiency of a Storz Modulith SLX. J Endourol. 2004;18:629–33.

    Article  PubMed  Google Scholar 

  29. Bohris C, Bayer T, Gumpinger R. Ultrasound monitoring of kidney stone extracorporeal shockwave lithotripsy with an external transducer: does fatty tissue cause image distrosions that affect stone comminution? J Endourol. 2010;24:81–8.

    Article  PubMed  Google Scholar 

  30. Bohris C, Bayer T, Lechner C. Hit/miss monitoring of ESWL by spectral Doppler ultrasound. Ultrasound Med Biol. 2003;29:705–12.

    Article  PubMed  Google Scholar 

  31. Hartung A, Schwarze W. LithoSpace by AST GmbH. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU, editors. Therapeutic energy applications in urology II. Standards and recent developments. Stuttgart/New York: Thieme; 2010. p. 53–6.

    Google Scholar 

  32. Pishchalnikov YA, McAteer JA, Williams Jr JC, Pishchalnikova I, vonDer Haar RJ. Why stones break better at slow shock wave rate than at fast rate: in vitro study with a research electrohydraulic lithotripter. J Endourol. 2006;20:537–41.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Weizer AZ, Zhong P, Preminger GM. New concepts in shock wave lithotripsy. Urol Clin North Am. 2007;34:375–82.

    Article  PubMed  Google Scholar 

  34. Seemann O, Rassweiler J, Chvapil M, Alken P, Drach GW. The effect of single shock waves on the vascular system of artificially perfused rabbit kidneys. J Stone Dis. 1993;5:172–8.

    CAS  PubMed  Google Scholar 

  35. Lambert EH, Walsh R, Moreno MW, Gupta M. Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J Urol. 2010;183:580–4.

    Google Scholar 

  36. Rassweiler J, Rassweiler M-C, Frede T, Alken P. Extracorporeal shock wave lithotripsy: an opinion on ist future. Indian J Urol. 2014;30:73–9.

    Google Scholar 

  37. Pace KT, Ghiculete D, Harju M, D`a Honey. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 2005; 174:595–599

    Google Scholar 

  38. Yilmaz E, Batislam E, Basar M, Tuglu D, Mert C, Basar H. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology 2005; 66:1160–1164

    Google Scholar 

  39. Madbouly K, El-Tiraifi AM, Seida M, El-Faqiu SR, Atasi R, Talic RF. Slow versus fast shock wave lithotripsy rate for urolithisasis: a prospective randomized study. J Urol 2005; 173:127–130

    Google Scholar 

  40. Chacko J, Moore M, Sankey N, Chandhoke PS. Does slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones. J Urol 2006; 175:1370–1373

    Google Scholar 

  41. Davenport K, Minervini A, Keoghane S, Parkin J, Keeley FX. Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. J Urol 2006; 176:2055–2058

    Google Scholar 

  42. Kato Y, Yamaguchi S, Hori J, Okuyama M, Kakizaki H. Improvement of stone comminution by slow delivery rate of shock waves in extracorporeal lithotripsy. Int J Urol 2006; 13:1461–1465

    Google Scholar 

  43. Koo V, Beattie I, Voung M. Improved cost-effectiveness and efficiency with a slower shock wave delivery rate. BJU Int 2010; 105:692–696

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens J. Rassweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Rassweiler, J.J., Rieker, P., Fiedler, M., Klein, J. (2017). How Does Shock Wave Break Stones. In: Rané, A., Turna, B., Autorino, R., Rassweiler, J. (eds) Practical Tips in Urology. Springer, London. https://doi.org/10.1007/978-1-4471-4348-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4348-2_36

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4347-5

  • Online ISBN: 978-1-4471-4348-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics