Changing Views of NREM Sleep Homeostatic Regulation

  • Péter Halász
  • Róbert Bódizs


The homeostatic sleep regulation idea underwent important development. Sleep homeostasis was first connected to the duration of the preceding awake time. Due to increasing innovative research in this field with convincing evidences on local sleep regulation, it seems that beyond the length of waking time, use-dependent afferent stimulation and synaptic upscaling (learning) are the main factors regulating the NREM sleep slow-wave activity (SWA). Further achievement of the same research line was to obtain evidences that plastic modulation of local slow-wave power during NREM sleep is closely related to the recreation of cognitive functions in the cortex, mainly in the frontal lobes. Slow-wave homeostasis and use-dependent plasticity are probably two sides of the same coin representing the biological function of slow-wave sleep.


Sleep homeostasis Use-dependent plasticity Local sleep Slow-wave activity Delta activity 


  1. Achermann P, Finelli LA, Borbély A. Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res. 2001;913(2):220–3.PubMedCrossRefGoogle Scholar
  2. Aeschbach D, Cutler AJ, Ronda JM. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci. 2008;28(11):2766–72.PubMedCrossRefGoogle Scholar
  3. Bersagliere A, Achermann P. Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res. 2010;19(1 Pt 2):228–37.PubMedCrossRefGoogle Scholar
  4. Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.PubMedGoogle Scholar
  5. Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51(5):483–95.PubMedCrossRefGoogle Scholar
  6. Borbély AA, Achermann P, Trachsel L. Tobler sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. J Biol Rhythms. 1989;4(2):149–60.PubMedCrossRefGoogle Scholar
  7. Cajochen C, Foy R, Dijk DJ. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res Online. 1999;2(3):65–9.PubMedGoogle Scholar
  8. Dijk DJ, Beersma DG, Daan S. EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms. 1987a;2(3):207–19.PubMedCrossRefGoogle Scholar
  9. Dijk DJ, Beersma DG, Daan S, Bloem GM, Van den Hoofdakker RH. Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 h of sleep on subsequent EEG power density. Eur Arch Psychiatry Neurol Sci. 1987b;236(6):323–8.PubMedCrossRefGoogle Scholar
  10. Feinberg I, March JD, Fein G, Floyd TC, Walker JM, Price L. Period and amplitude analysis of 0.5-3 c/sec activity in NREM sleep of young adults. Electroencephalogr Clin Neurophysiol. 1978;44(2):202–13.PubMedCrossRefGoogle Scholar
  11. Finelli LA, Borbély AA, Achermann P. Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci. 2001;13(12):2282–90.PubMedCrossRefGoogle Scholar
  12. Horne JA. Human sleep, sleep loss and behaviour. Implications for the prefrontal cortex and psychiatric disorder. Br J Psychiatry. 1993;162:413–9.PubMedCrossRefGoogle Scholar
  13. Horne JA, Minard A. Sleep and sleepiness following a behaviourally ‘active’ day. Ergonomics. 1985;28(3):567–75.PubMedCrossRefGoogle Scholar
  14. Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430(6995):78–81.PubMedCrossRefGoogle Scholar
  15. Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, Tononi G. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006;9(9):1169–76.PubMedCrossRefGoogle Scholar
  16. Huber R, Määttä S, Esser SK, Sarasso S, Ferrarelli F, Watson A, Ferreri F, Peterson MJ, Tononi G. Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci. 2008;28(31):7911–8.PubMedCrossRefGoogle Scholar
  17. Kattler H, Dijk DJ, Borbély AA. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res. 1994;3(3):159–64.PubMedCrossRefGoogle Scholar
  18. Knowles JB, MacLean AW, Salem L, Vetere C, Coulter M. Slow-wave sleep in daytime and nocturnal sleep: an estimate of the time course of “process S”. J Biol Rhythms. 1986;1(4):303–8.PubMedCrossRefGoogle Scholar
  19. Krueger JM, Obál F. A neuronal group theory of sleep function. J Sleep Res. 1993;2(2):63–9.PubMedCrossRefGoogle Scholar
  20. Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci. 2008;9(12):910–9.PubMedCrossRefGoogle Scholar
  21. Marzano C, Ferrara M, Curcio G, De Gennaro L. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J Sleep Res. 2010;19(2):260–8.PubMedCrossRefGoogle Scholar
  22. McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med. 2007;8(4):302–30.PubMedCrossRefGoogle Scholar
  23. Miyamoto H, Katagiri H, Hensch T. Experience-dependent slow-wave sleep development. Nat Neurosci. 2003;6(6):553–4.PubMedCrossRefGoogle Scholar
  24. Pappenheimer JR, Koski G, Fencl V, Karnovsky ML, Krueger J. Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J Neurophysiol. 1975;38(6):1299–311.PubMedGoogle Scholar
  25. Pieron H. Le problème physiologique du sommeil. Paris: Masson; 1913.Google Scholar
  26. Rector DM, Schei JL, Van Dongen HP, Belenky G, Krueger JM. Physiological markers of local sleep. Eur J Neurosci. 2009;29(9):1771–8.PubMedCrossRefGoogle Scholar
  27. Rétey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci USA. 2005;102(43):15676–81.PubMedCrossRefGoogle Scholar
  28. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.PubMedGoogle Scholar
  29. Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, Saper CB. Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci. 2000;20(22):8620–8.PubMedGoogle Scholar
  30. Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3(12):1237–8.PubMedCrossRefGoogle Scholar
  31. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res. 2000;115(2):183–204.PubMedCrossRefGoogle Scholar
  32. Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 2003 Dec 15;62(2):143–50.PubMedCrossRefGoogle Scholar
  33. Vyazovskiy V, Borbély AA, Tobler I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J Sleep Res. 2000;9(4):367–71.PubMedCrossRefGoogle Scholar
  34. Webb WB, Agnew Jr HW. Stage 4 sleep: influence of time course variables. Science. 1971;174(4016):1354–6.PubMedCrossRefGoogle Scholar
  35. Yoshida H, Peterfi Z, García-García F, Kirkpatrick R, Yasuda T, Krueger JM. State-specific asymmetries in EEG slow wave activity induced by local application of TNFalpha. Brain Res. 2004;1009(1–2):129–36.PubMedCrossRefGoogle Scholar
  36. Zavada A, Strijkstra AM, Boerema AS, Daan S, Beersma DG. Evidence for differential human slow-wave activity regulation across the brain. J Sleep Res. 2009;18(1):3–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Péter Halász
    • 1
  • Róbert Bódizs
    • 2
  1. 1.Institute of Experimental Medicine and Institute of NeuroscienceBudapestHungary
  2. 2.Semmelweis University Institute of Behavioral ScienceBudapestHungary

Personalised recommendations