Advertisement

Other Machining Processes and Modeling Techniques

  • Angelos P. MarkopoulosEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In this chapter, other machining processes, except the ones already analyzed in the first four chapters of this book, are considered. First, grinding, an abrasive process, which is the most widely used of its kind in industry, is analyzed. Modeling of grinding with FEM is quite different from modeling of turning, milling or drilling; this is why it is chosen to be analyzed individually. Furthermore, a few remarks on modeling with FEM of non-conventional machining process are made.

Keywords

Hide Layer Electrical Discharge Machine Smooth Particle Hydrodynamic Heat Affected Zone Chip Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. Society of Manufacturing Engineers, DearbornGoogle Scholar
  2. 2.
    Klocke F, König W (2005) Fertigungsverfahren. Schleifen, Honen, Läppen. Springer, BerlinGoogle Scholar
  3. 3.
    Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Ann CIRP 55(2):667–696CrossRefGoogle Scholar
  4. 4.
    Mackerle J (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44CrossRefGoogle Scholar
  5. 5.
    Mackerle J (2003) Finite element analysis and simulation of machining: an addendum a bibliography (1996–2002). Int J Mach Tools Manuf 43:103–114CrossRefGoogle Scholar
  6. 6.
    Doman DA, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49:109–116CrossRefGoogle Scholar
  7. 7.
    Malkin S (1978) Burning limit for surface and cylindrical grinding of steels. Ann CIRP 27(1):233–236Google Scholar
  8. 8.
    Malkin S, Guo C (2007) Thermal analysis of grinding. Ann CIRP 56(2):760–782CrossRefGoogle Scholar
  9. 9.
    Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. J Proc R Soc N S W 76(3):203–224MathSciNetGoogle Scholar
  10. 10.
    Outwater JO, Shaw MC (1952) Surface temperature in grinding. Trans ASME 74:73–86Google Scholar
  11. 11.
    Des Ruisseaux NR, Zerkle RD (1970) Thermal analysis of the grinding process. Trans ASME J Eng Ind 92:428–434CrossRefGoogle Scholar
  12. 12.
    Malkin S (1974) Thermal aspects of grinding: part 2 surface temperatures and workpiece burn. Trans ASME J Eng Ind 96:1184–1191CrossRefGoogle Scholar
  13. 13.
    Lavine AS (1988) A simple model for convective cooling during the grinding process. Trans ASME J Eng Ind 110:1–6CrossRefGoogle Scholar
  14. 14.
    Rowe WB, Petit JA, Boyle A, Moruzzi JL (1988) Avoidance of thermal damage in grinding and prediction of the damage threshold. Ann CIRP 37(1):327–330CrossRefGoogle Scholar
  15. 15.
    Kato T, Fujii H (2000) Temperature measurement of workpieces in conventional surface grinding. Trans ASME J Manuf Sci Eng 122:297–303CrossRefGoogle Scholar
  16. 16.
    Snoeys R, Maris M, Peters J (1978) Thermally induced damage in grinding. Ann CIRP 27(2):571–581Google Scholar
  17. 17.
    Tönshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. Ann CIRP 41(2):677–688CrossRefGoogle Scholar
  18. 18.
    Mamalis AG, Kundrák J, Manolakos DE, Gyáni K, Markopoulos A, Horváth M (2003) Effect of the workpiece material on the heat affected zones during grinding: a numerical simulation. Int J Adv Manuf Technol 22:761–767CrossRefGoogle Scholar
  19. 19.
    Biermann D, Schneider M (1997) Modeling and simulation of workpiece temperature in grinding by finite element analysis. Mach Sci Technol 1:173–183CrossRefGoogle Scholar
  20. 20.
    Mahdi M, Zhang L (1995) The finite element thermal analysis of grinding processes by ADINA. Comput Struct 56:313–320CrossRefGoogle Scholar
  21. 21.
    Weber T (1999) Simulation of grinding by means of the finite element analysis. Proceedings of the 3rd international machining & grinding SME conference, Ohio, USAGoogle Scholar
  22. 22.
    Mamalis AG, Kundrak J, Manolakos DE, Gyani K, Markopoulos A (2003) Thermal modelling of surface grinding using implicit finite element techniques. Int J Adv Manuf Technol 21:929–934CrossRefGoogle Scholar
  23. 23.
    Jin T, Stephenson DJ (1999) Three dimensional finite element simulation of transient heat transfer in high efficiency deep grinding. Ann CIRP 53(1):259–262CrossRefGoogle Scholar
  24. 24.
    Wang L, Qin Y, Liu ZC, Ge PQ, Gao W (2003) Computer simulation of a workpiece temperature field during the grinding process. Proc Inst Mech Eng Part B J Eng Manuf 217(7):953–959CrossRefGoogle Scholar
  25. 25.
    Mahdi M, Zhang L (2000) A numerical algorithm for the full coupling of mechanical deformation, thermal deformation, and phase transformation in surface grinding. Comput Mech 26:148–156zbMATHCrossRefGoogle Scholar
  26. 26.
    Ohbuchi Y, Obikawa T (2003) Finite element modeling of chip formation in the domain of negative rake angle cutting. J Eng Mater Technol 125:324–332CrossRefGoogle Scholar
  27. 27.
    Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, Raedt HW, Sweeney K (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120:450–457CrossRefGoogle Scholar
  28. 28.
    Markopoulos AP (2011) Simulation of grinding by means of the finite element method and artificial neural networks. In: Davim JP (ed) Computational methods for optimizing manufacturing technology. IGI Global, Hershey, pp 193–218Google Scholar
  29. 29.
    Markopoulos AP (2011) Finite elements modelling and simulation of precision grinding. J Mach Form Technol 3(3/4):163–184Google Scholar
  30. 30.
    Hoffmeister H-W, Weber T (1999) Simulation of grinding by means of the finite element analysis. Third international machining & grinding SME conference, Ohio, MR99-234, USAGoogle Scholar
  31. 31.
    Moulik PN, Yang HTY, Chandrasekar S (2001) Simulation of stresses due to grinding. Int J Mech Sci 43:831–851zbMATHCrossRefGoogle Scholar
  32. 32.
    Shaw MC, Vyas A (1994) Heat affected zones in grinding steel. Ann CIRP 43(1):279–282CrossRefGoogle Scholar
  33. 33.
    Zhang L, Mahdi M (1995) Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation. Int J Mach Tools Manuf 35:1397–1409CrossRefGoogle Scholar
  34. 34.
    Chang CC, Szeri AZ (1998) A thermal analysis of grinding. Wear 216:77–86CrossRefGoogle Scholar
  35. 35.
    Dixit US, Joshi SN, Davim JP (2011) Incorporation of material behavior in modeling of metal forming and machining processes: a review. Mater Des 32:3655–3670CrossRefGoogle Scholar
  36. 36.
    Bhondwe KL, Yadava V, Kathiresan G (2006) Finite element prediction of material removal rate due to electro-chemical spark machining. Int J Mach Tools Manuf 46:1699–1706CrossRefGoogle Scholar
  37. 37.
    Davim JP (ed) (2012) Machining of metal matrix composites. Springer, LondonGoogle Scholar
  38. 38.
    Dandekar C, Shin YC (2010) Laser-assisted machining of a fiber reinforced Al-2 %Cu metal matrix composite. Trans ASME J Manuf Sci Eng 132(6):061004CrossRefGoogle Scholar
  39. 39.
    Soo SL, Aspinwall DK (2007) Developments in modeling of metal cutting processes. Proc Inst Mech Eng Part L J Mater Des Appl 221:197–211Google Scholar
  40. 40.
    van Luttervelt CA, Childs THC, Jawahir IS, Klocke F, Venuvinod PK (1998) Present situation and future trends in modelling of machining operations. Ann ClRP 47(2):587–626CrossRefGoogle Scholar
  41. 41.
    Markopoulos A, Vaxevanidis NM, Petropoulos G, Manolakos DE (2006) Artificial neural networks modeling of surface finish in electro-discharge machining of tool steels (ESDA 2006-95609). Proceedings of ESDA 2006, 8th biennial ASME conference on engineering systems design and analysis, Torino, ItalyGoogle Scholar
  42. 42.
    Vaxevanidis NM, Markopoulos A, Petropoulos G (2010) Artificial neural network modelling of surface quality characteristics in abrasive water jet machining of trip steel sheet. In: Davim JP (ed) Artificial intelligence in manufacturing research. Nova Science Publishers, Inc, New YorkGoogle Scholar
  43. 43.
    Chandrasekaran M, Muralidhar M, Murali Krishna C, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46:445–464CrossRefGoogle Scholar
  44. 44.
    Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. Wiley Interscience, New YorkGoogle Scholar
  45. 45.
    Davalo E, Naim P, Rawsthorne A (1991) Neural networks. Macmillan Education Limited, LondonGoogle Scholar
  46. 46.
    Fausset LV (1994) Fundamentals of neural networks: architectures, algorithms and applications. Prentice Hall, Upper Saddle RiverGoogle Scholar
  47. 47.
    Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  48. 48.
    Dini G (1997) Literature database on applications of artificial intelligence methods in manufacturing engineering. Ann CIRP 46(2):681–690CrossRefGoogle Scholar
  49. 49.
    Kao JY, Tarng YS (1997) A neural network approach for the on-line monitoring of the electrical discharge machining process. J Mater Process Technol 69:112–119CrossRefGoogle Scholar
  50. 50.
    Tsai K-M, Wang PJ (2001) Comparisons of neural network models on material removal rate in electrical discharge machining. J Mater Process Technol 117:111–124CrossRefGoogle Scholar
  51. 51.
    Wang K, Gelgele HL, Wang Y, Yuan Q, Fang M (2003) A hybrid intelligent method for modelling the EDM process. Int J Mach Tools Manuf 43:995–999CrossRefGoogle Scholar
  52. 52.
    Panda DK, Bhoi RK (2005) Artificial neural network prediction of material removal rate in electro discharge machining. Mater Manuf Process 20(4):645–672CrossRefGoogle Scholar
  53. 53.
    Tsai K-M, Wang PJ (2001) Predictions on surface finish in electrical discharge machining based upon neural network models. Int J Mach Tools Manuf 41:1385–1403CrossRefGoogle Scholar
  54. 54.
    Markopoulos AP, Manolakos DE, Vaxevanidis NM (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J Intell Manuf 19(3):283–292CrossRefGoogle Scholar
  55. 55.
    Komanduri R, Raff LM (2001) A review on the molecular dynamics simulation of machining at the atomic scale. Proc Inst Mech Eng Part B J Eng Manuf 215:1639–1672Google Scholar
  56. 56.
    Stowers IF, Belak JF, Lucca DA, Komanduri R, Moriwaki T, Okuda K, Ikawa N, Shimada S, Tanaka H, Dow TA, Drescher JD (1991) Molecular-dynamics simulation of the chip forming process in single crystal copper and comparison with experimental data. Proc ASPE Ann Meet 1991:100–104Google Scholar
  57. 57.
    Ikawa N, Shimada S, Tanaka H, Ohmori G (1991) Atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. Ann CIRP 40(1):551–554CrossRefGoogle Scholar
  58. 58.
    McGeough J (ed) (2002) Micromachining of engineering materials. Marcel Dekker, Inc., New YorkGoogle Scholar
  59. 59.
    Inamura T, Takezawa N, Kumaki Y (1993) Mechanics and energy dissipation in nanoscale cutting. Ann CIRP 42(1):79–82CrossRefGoogle Scholar
  60. 60.
    Shimada S, Ikawa N, Tanaka H, Uchikoshi J (1994) Structure of micromachined surface simulated by molecular dynamics analysis. Ann CIRP 43(1):51–54CrossRefGoogle Scholar
  61. 61.
    Rentsch R, Inasaki I (1995) Investigation of surface integrity by molecular dynamics simulation. Ann CIRP 42(1):295–298CrossRefGoogle Scholar
  62. 62.
    Komanduri R, Chandrasekaran N, Raff LM (1998) Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219(1):84–97CrossRefGoogle Scholar
  63. 63.
    Komanduri R, Chandrasekaran N, Raff LM (2001) MD simulation of exit failure in nanometric cutting. Mater Sci Eng A 311:1–12CrossRefGoogle Scholar
  64. 64.
    Cheng K, Luo X, Ward R, Holt R (1993) Modeling and simulation of the tool wear in nanometric cutting. Wear 255:1427–1432CrossRefGoogle Scholar
  65. 65.
    Luo X, Cheng K, Guo X, Holt R (2003) An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int J Prod Res 41(7):1449–1465CrossRefGoogle Scholar
  66. 66.
    Rentsch R (2004) Molecular dynamics simulation of micromachining of pre-machined surfaces. Proceedings of 4th Euspen international conference, Glascow, Scotland, pp 139–140Google Scholar
  67. 67.
    Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45:1681–1686CrossRefGoogle Scholar
  68. 68.
    Pei QX, Lu C, Fang FZ, Wu H (2006) Nanometric cutting of copper: a molecular dynamics study. Comput Mater Sci 37:434–441CrossRefGoogle Scholar
  69. 69.
    Cai MB, Li XP, Rahman M (2007) Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J Mater Process Technol 192–193:607–612CrossRefGoogle Scholar
  70. 70.
    Zhang JJ, Sun T, Yan YD, Liang YC, Dong S (2008) Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process. Appl Surf Sci 254:4774–4779CrossRefGoogle Scholar
  71. 71.
    Aly MF, Ng E-G, Veldhuis SC, Elbestawi MA (2006) Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis” force model. Int J Mach Tools Manuf 46:1727–1739CrossRefGoogle Scholar
  72. 72.
    Lin Z-C, Huang J-C, Jeng Y-R (2007) 3D nano-scale cutting model for nickel material. J Mater Process Technol 192–193:27–36CrossRefGoogle Scholar
  73. 73.
    Grzesik W, Bartoszuk M, Nieslony P (2004) Finite difference analysis of the thermal behaviour of coated tools in orthogonal cutting of steels. Int J Mach Tools Manuf 44:1451–1462CrossRefGoogle Scholar
  74. 74.
    Belytshko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefGoogle Scholar
  75. 75.
    Liu GR (2002) Mesh free methods moving beyond finite element method. CRC, Boca RatonCrossRefGoogle Scholar
  76. 76.
    Chen Y, James Lee J, Eskandarian A (2006) Meshless methods in solid mechanics. Springer, New YorkzbMATHGoogle Scholar
  77. 77.
    Calamaz M, Limido J, Nouari M, Espinosa C, Coupard D, Salaun M, Girot F, Chieragatti R (2009) Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials. Int J Refract Metal Hard Mater 27(3):595–604CrossRefGoogle Scholar
  78. 78.
    Gurgel AG, Sales WF, de Barcellos CS, Bonney J, Ezugwu EO (2006) An element-free Galerkin method approach for estimating sensitivity of machined surface parameters. Int J Mach Tools Manuf 46(12–13):1637–1642CrossRefGoogle Scholar
  79. 79.
    Limido J, Espinosa C, Salaun M, Lacome JL (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49(7):898–908CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Laboratory of Manufacturing TechnologyNational Technical University of AthensAthensGreece

Personalised recommendations