Skip to main content

Other Machining Processes and Modeling Techniques

  • Chapter
  • First Online:
Finite Element Method in Machining Processes

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

  • 2709 Accesses

Abstract

In this chapter, other machining processes, except the ones already analyzed in the first four chapters of this book, are considered. First, grinding, an abrasive process, which is the most widely used of its kind in industry, is analyzed. Modeling of grinding with FEM is quite different from modeling of turning, milling or drilling; this is why it is chosen to be analyzed individually. Furthermore, a few remarks on modeling with FEM of non-conventional machining process are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. Society of Manufacturing Engineers, Dearborn

    Google Scholar 

  2. Klocke F, König W (2005) Fertigungsverfahren. Schleifen, Honen, Läppen. Springer, Berlin

    Google Scholar 

  3. Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Ann CIRP 55(2):667–696

    Article  Google Scholar 

  4. Mackerle J (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44

    Article  Google Scholar 

  5. Mackerle J (2003) Finite element analysis and simulation of machining: an addendum a bibliography (1996–2002). Int J Mach Tools Manuf 43:103–114

    Article  Google Scholar 

  6. Doman DA, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49:109–116

    Article  Google Scholar 

  7. Malkin S (1978) Burning limit for surface and cylindrical grinding of steels. Ann CIRP 27(1):233–236

    Google Scholar 

  8. Malkin S, Guo C (2007) Thermal analysis of grinding. Ann CIRP 56(2):760–782

    Article  Google Scholar 

  9. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. J Proc R Soc N S W 76(3):203–224

    MathSciNet  Google Scholar 

  10. Outwater JO, Shaw MC (1952) Surface temperature in grinding. Trans ASME 74:73–86

    Google Scholar 

  11. Des Ruisseaux NR, Zerkle RD (1970) Thermal analysis of the grinding process. Trans ASME J Eng Ind 92:428–434

    Article  Google Scholar 

  12. Malkin S (1974) Thermal aspects of grinding: part 2 surface temperatures and workpiece burn. Trans ASME J Eng Ind 96:1184–1191

    Article  Google Scholar 

  13. Lavine AS (1988) A simple model for convective cooling during the grinding process. Trans ASME J Eng Ind 110:1–6

    Article  Google Scholar 

  14. Rowe WB, Petit JA, Boyle A, Moruzzi JL (1988) Avoidance of thermal damage in grinding and prediction of the damage threshold. Ann CIRP 37(1):327–330

    Article  Google Scholar 

  15. Kato T, Fujii H (2000) Temperature measurement of workpieces in conventional surface grinding. Trans ASME J Manuf Sci Eng 122:297–303

    Article  Google Scholar 

  16. Snoeys R, Maris M, Peters J (1978) Thermally induced damage in grinding. Ann CIRP 27(2):571–581

    Google Scholar 

  17. Tönshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. Ann CIRP 41(2):677–688

    Article  Google Scholar 

  18. Mamalis AG, Kundrák J, Manolakos DE, Gyáni K, Markopoulos A, Horváth M (2003) Effect of the workpiece material on the heat affected zones during grinding: a numerical simulation. Int J Adv Manuf Technol 22:761–767

    Article  Google Scholar 

  19. Biermann D, Schneider M (1997) Modeling and simulation of workpiece temperature in grinding by finite element analysis. Mach Sci Technol 1:173–183

    Article  Google Scholar 

  20. Mahdi M, Zhang L (1995) The finite element thermal analysis of grinding processes by ADINA. Comput Struct 56:313–320

    Article  Google Scholar 

  21. Weber T (1999) Simulation of grinding by means of the finite element analysis. Proceedings of the 3rd international machining & grinding SME conference, Ohio, USA

    Google Scholar 

  22. Mamalis AG, Kundrak J, Manolakos DE, Gyani K, Markopoulos A (2003) Thermal modelling of surface grinding using implicit finite element techniques. Int J Adv Manuf Technol 21:929–934

    Article  Google Scholar 

  23. Jin T, Stephenson DJ (1999) Three dimensional finite element simulation of transient heat transfer in high efficiency deep grinding. Ann CIRP 53(1):259–262

    Article  Google Scholar 

  24. Wang L, Qin Y, Liu ZC, Ge PQ, Gao W (2003) Computer simulation of a workpiece temperature field during the grinding process. Proc Inst Mech Eng Part B J Eng Manuf 217(7):953–959

    Article  Google Scholar 

  25. Mahdi M, Zhang L (2000) A numerical algorithm for the full coupling of mechanical deformation, thermal deformation, and phase transformation in surface grinding. Comput Mech 26:148–156

    Article  MATH  Google Scholar 

  26. Ohbuchi Y, Obikawa T (2003) Finite element modeling of chip formation in the domain of negative rake angle cutting. J Eng Mater Technol 125:324–332

    Article  Google Scholar 

  27. Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, Raedt HW, Sweeney K (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120:450–457

    Article  Google Scholar 

  28. Markopoulos AP (2011) Simulation of grinding by means of the finite element method and artificial neural networks. In: Davim JP (ed) Computational methods for optimizing manufacturing technology. IGI Global, Hershey, pp 193–218

    Google Scholar 

  29. Markopoulos AP (2011) Finite elements modelling and simulation of precision grinding. J Mach Form Technol 3(3/4):163–184

    Google Scholar 

  30. Hoffmeister H-W, Weber T (1999) Simulation of grinding by means of the finite element analysis. Third international machining & grinding SME conference, Ohio, MR99-234, USA

    Google Scholar 

  31. Moulik PN, Yang HTY, Chandrasekar S (2001) Simulation of stresses due to grinding. Int J Mech Sci 43:831–851

    Article  MATH  Google Scholar 

  32. Shaw MC, Vyas A (1994) Heat affected zones in grinding steel. Ann CIRP 43(1):279–282

    Article  Google Scholar 

  33. Zhang L, Mahdi M (1995) Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation. Int J Mach Tools Manuf 35:1397–1409

    Article  Google Scholar 

  34. Chang CC, Szeri AZ (1998) A thermal analysis of grinding. Wear 216:77–86

    Article  Google Scholar 

  35. Dixit US, Joshi SN, Davim JP (2011) Incorporation of material behavior in modeling of metal forming and machining processes: a review. Mater Des 32:3655–3670

    Article  Google Scholar 

  36. Bhondwe KL, Yadava V, Kathiresan G (2006) Finite element prediction of material removal rate due to electro-chemical spark machining. Int J Mach Tools Manuf 46:1699–1706

    Article  Google Scholar 

  37. Davim JP (ed) (2012) Machining of metal matrix composites. Springer, London

    Google Scholar 

  38. Dandekar C, Shin YC (2010) Laser-assisted machining of a fiber reinforced Al-2 %Cu metal matrix composite. Trans ASME J Manuf Sci Eng 132(6):061004

    Article  Google Scholar 

  39. Soo SL, Aspinwall DK (2007) Developments in modeling of metal cutting processes. Proc Inst Mech Eng Part L J Mater Des Appl 221:197–211

    Google Scholar 

  40. van Luttervelt CA, Childs THC, Jawahir IS, Klocke F, Venuvinod PK (1998) Present situation and future trends in modelling of machining operations. Ann ClRP 47(2):587–626

    Article  Google Scholar 

  41. Markopoulos A, Vaxevanidis NM, Petropoulos G, Manolakos DE (2006) Artificial neural networks modeling of surface finish in electro-discharge machining of tool steels (ESDA 2006-95609). Proceedings of ESDA 2006, 8th biennial ASME conference on engineering systems design and analysis, Torino, Italy

    Google Scholar 

  42. Vaxevanidis NM, Markopoulos A, Petropoulos G (2010) Artificial neural network modelling of surface quality characteristics in abrasive water jet machining of trip steel sheet. In: Davim JP (ed) Artificial intelligence in manufacturing research. Nova Science Publishers, Inc, New York

    Google Scholar 

  43. Chandrasekaran M, Muralidhar M, Murali Krishna C, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46:445–464

    Article  Google Scholar 

  44. Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. Wiley Interscience, New York

    Google Scholar 

  45. Davalo E, Naim P, Rawsthorne A (1991) Neural networks. Macmillan Education Limited, London

    Google Scholar 

  46. Fausset LV (1994) Fundamentals of neural networks: architectures, algorithms and applications. Prentice Hall, Upper Saddle River

    Google Scholar 

  47. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  48. Dini G (1997) Literature database on applications of artificial intelligence methods in manufacturing engineering. Ann CIRP 46(2):681–690

    Article  Google Scholar 

  49. Kao JY, Tarng YS (1997) A neural network approach for the on-line monitoring of the electrical discharge machining process. J Mater Process Technol 69:112–119

    Article  Google Scholar 

  50. Tsai K-M, Wang PJ (2001) Comparisons of neural network models on material removal rate in electrical discharge machining. J Mater Process Technol 117:111–124

    Article  Google Scholar 

  51. Wang K, Gelgele HL, Wang Y, Yuan Q, Fang M (2003) A hybrid intelligent method for modelling the EDM process. Int J Mach Tools Manuf 43:995–999

    Article  Google Scholar 

  52. Panda DK, Bhoi RK (2005) Artificial neural network prediction of material removal rate in electro discharge machining. Mater Manuf Process 20(4):645–672

    Article  Google Scholar 

  53. Tsai K-M, Wang PJ (2001) Predictions on surface finish in electrical discharge machining based upon neural network models. Int J Mach Tools Manuf 41:1385–1403

    Article  Google Scholar 

  54. Markopoulos AP, Manolakos DE, Vaxevanidis NM (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J Intell Manuf 19(3):283–292

    Article  Google Scholar 

  55. Komanduri R, Raff LM (2001) A review on the molecular dynamics simulation of machining at the atomic scale. Proc Inst Mech Eng Part B J Eng Manuf 215:1639–1672

    Google Scholar 

  56. Stowers IF, Belak JF, Lucca DA, Komanduri R, Moriwaki T, Okuda K, Ikawa N, Shimada S, Tanaka H, Dow TA, Drescher JD (1991) Molecular-dynamics simulation of the chip forming process in single crystal copper and comparison with experimental data. Proc ASPE Ann Meet 1991:100–104

    Google Scholar 

  57. Ikawa N, Shimada S, Tanaka H, Ohmori G (1991) Atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. Ann CIRP 40(1):551–554

    Article  Google Scholar 

  58. McGeough J (ed) (2002) Micromachining of engineering materials. Marcel Dekker, Inc., New York

    Google Scholar 

  59. Inamura T, Takezawa N, Kumaki Y (1993) Mechanics and energy dissipation in nanoscale cutting. Ann CIRP 42(1):79–82

    Article  Google Scholar 

  60. Shimada S, Ikawa N, Tanaka H, Uchikoshi J (1994) Structure of micromachined surface simulated by molecular dynamics analysis. Ann CIRP 43(1):51–54

    Article  Google Scholar 

  61. Rentsch R, Inasaki I (1995) Investigation of surface integrity by molecular dynamics simulation. Ann CIRP 42(1):295–298

    Article  Google Scholar 

  62. Komanduri R, Chandrasekaran N, Raff LM (1998) Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219(1):84–97

    Article  Google Scholar 

  63. Komanduri R, Chandrasekaran N, Raff LM (2001) MD simulation of exit failure in nanometric cutting. Mater Sci Eng A 311:1–12

    Article  Google Scholar 

  64. Cheng K, Luo X, Ward R, Holt R (1993) Modeling and simulation of the tool wear in nanometric cutting. Wear 255:1427–1432

    Article  Google Scholar 

  65. Luo X, Cheng K, Guo X, Holt R (2003) An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int J Prod Res 41(7):1449–1465

    Article  Google Scholar 

  66. Rentsch R (2004) Molecular dynamics simulation of micromachining of pre-machined surfaces. Proceedings of 4th Euspen international conference, Glascow, Scotland, pp 139–140

    Google Scholar 

  67. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45:1681–1686

    Article  Google Scholar 

  68. Pei QX, Lu C, Fang FZ, Wu H (2006) Nanometric cutting of copper: a molecular dynamics study. Comput Mater Sci 37:434–441

    Article  Google Scholar 

  69. Cai MB, Li XP, Rahman M (2007) Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J Mater Process Technol 192–193:607–612

    Article  Google Scholar 

  70. Zhang JJ, Sun T, Yan YD, Liang YC, Dong S (2008) Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process. Appl Surf Sci 254:4774–4779

    Article  Google Scholar 

  71. Aly MF, Ng E-G, Veldhuis SC, Elbestawi MA (2006) Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis” force model. Int J Mach Tools Manuf 46:1727–1739

    Article  Google Scholar 

  72. Lin Z-C, Huang J-C, Jeng Y-R (2007) 3D nano-scale cutting model for nickel material. J Mater Process Technol 192–193:27–36

    Article  Google Scholar 

  73. Grzesik W, Bartoszuk M, Nieslony P (2004) Finite difference analysis of the thermal behaviour of coated tools in orthogonal cutting of steels. Int J Mach Tools Manuf 44:1451–1462

    Article  Google Scholar 

  74. Belytshko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  Google Scholar 

  75. Liu GR (2002) Mesh free methods moving beyond finite element method. CRC, Boca Raton

    Book  Google Scholar 

  76. Chen Y, James Lee J, Eskandarian A (2006) Meshless methods in solid mechanics. Springer, New York

    MATH  Google Scholar 

  77. Calamaz M, Limido J, Nouari M, Espinosa C, Coupard D, Salaun M, Girot F, Chieragatti R (2009) Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials. Int J Refract Metal Hard Mater 27(3):595–604

    Article  Google Scholar 

  78. Gurgel AG, Sales WF, de Barcellos CS, Bonney J, Ezugwu EO (2006) An element-free Galerkin method approach for estimating sensitivity of machined surface parameters. Int J Mach Tools Manuf 46(12–13):1637–1642

    Article  Google Scholar 

  79. Limido J, Espinosa C, Salaun M, Lacome JL (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49(7):898–908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos P. Markopoulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Markopoulos, A.P. (2013). Other Machining Processes and Modeling Techniques. In: Finite Element Method in Machining Processes. SpringerBriefs in Applied Sciences and Technology(). Springer, London. https://doi.org/10.1007/978-1-4471-4330-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4330-7_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4329-1

  • Online ISBN: 978-1-4471-4330-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics