HRV and Alterations in the Vegetative Nervous System

  • Gernot Ernst


Heart rate variability is often discussed synonymously with imbalance within the autonomous system. HRV has been seen not only as an indicator for probable disturbances in the autonomous system. In a significant number of publications, it is even regarded as proof for ANS dysfunction without other kind of evidence (e.g., in Mazzeo et al. 2011). In this chapter I intend to review this hypothesis.


Heart Rate Variability Anterior Cingulate Cortex Sympathetic Nerve Activity Muscle Sympathetic Nerve Activity Sympathetic Outflow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamopoulos S, Piepoli M, McCance A, et al. Comparison of different methods for assessing sympathovagal balance in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1992;70:1576–82.PubMedCrossRefGoogle Scholar
  2. Brown DR, Brown LV, Patwardhan A, Randall DC. Sympathetic activity and blood pressure a tightly coupled at 0.4 Hz in conscious rats. Am J Physiol. 1994;267:R1378–84.PubMedGoogle Scholar
  3. Burgess DE, Hundley JC, Li SG, Randall DC, Brown DR. First-order differential-delay equation for the baroreflex predicts the 0.4 Hz blood pressure rhythms in rats. Am J Physiol. 1997;273:R1878–84.PubMedGoogle Scholar
  4. Casadei B, Cochrane S, Johnston J, Conway J, Sleight P. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand. 1995;153:125–31.PubMedCrossRefGoogle Scholar
  5. Cerutti C, Barres C, Paultre C. Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. Am J Physiol Heart Circ Physiol. 1994;266:H1993–2000.Google Scholar
  6. Critchley HD, Mathias CJ, Josephs O, O’Doherty J, Zanini S, Dewar BK, Cipolotti L, Shallice T, Dolan RJ. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126:2139–52.PubMedCrossRefGoogle Scholar
  7. DeBoer R, Karemaker J, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol Heart Circ Physiol. 1987;253:H680–9.Google Scholar
  8. Druschky A, Hilz MJ, Platsch G, Radespiegel-Tröger M, Druschky K, Kuwert T, Stefan H, Neundörfer B. Interictal cardiac autonomic dysfunction in temporal lobe epilepsy demonstrated by [123I]metaiodobenzylguanidine-SPECT. Brain. 2001;124:2372–82.PubMedCrossRefGoogle Scholar
  9. Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol. 1983;54:961–6.PubMedGoogle Scholar
  10. Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96:3224–32.PubMedCrossRefGoogle Scholar
  11. Fouad FM, Tarazi RC, Ferrario CM, Fighaly S, Alicandri C. Assessment of parasympathetic control of heart rate by a noninvasive method. Am J Physiol. 1984;246:H838–42.PubMedGoogle Scholar
  12. Goldberger JJ, Challapalli S, Tung R, et al. Relationship of heart rate variability to parasympathetic effect. Circulation. 2001;103:1977–83.PubMedCrossRefGoogle Scholar
  13. Gonzalez JJ, Cordero JJ, Feria M, Pereda E. Detection and sources of nonlinearity in the variability of cardiac R-R intervals and blood pressure in rats. Am J Physiol Heart Circ Physiol. 2000;279:H3040–6.PubMedGoogle Scholar
  14. Gregoire J, Tuck S, Yamamoto Y, Hughson RL. Heart rate variability at rest and exercise: influence of age, gender, and physical training. Can J Appl Physiol. 1996;21:455–70.PubMedCrossRefGoogle Scholar
  15. Grossman P, Karemaker J, Wieling W. Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology. 1991;28:201–16.PubMedCrossRefGoogle Scholar
  16. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PJ. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence for increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.PubMedCrossRefGoogle Scholar
  17. Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991;67:199–204.PubMedCrossRefGoogle Scholar
  18. Hopf HB, Skyschally A, Heusch G, Peters J. Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation. Anesthesiology. 1995;82:609–19.PubMedCrossRefGoogle Scholar
  19. Introna R, Yodlowski E, Pruett J, Montano N, Porta A, Crumrine R. Sympathovagal effects of spinal anesthesia assessed by heart rate variability analysis. Anesth Analg. 1995;80:315–21.PubMedGoogle Scholar
  20. Janson NB, Balanov AG, Anishchenko VS, McClintock PV. Phase synchronization between several interacting processes from univariate data. Phys Rev Lett. 2001;86:1749–52.PubMedCrossRefGoogle Scholar
  21. Julien C, Zhang ZQ, Cerutti C, Head GA. Hemodynamic analysis for arterial pressure oscillations in conscious rats. J Auton Nerv Syst. 1995;50:239–52.PubMedCrossRefGoogle Scholar
  22. Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation. 1994;90:234–40.PubMedCrossRefGoogle Scholar
  23. Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol (Lond). 1994;474:483–95.Google Scholar
  24. Kollai M, Mizsei G. Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol (Lond). 1990;67:199–204.Google Scholar
  25. Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. Neuroimage. 2009;44:213–22.PubMedCrossRefGoogle Scholar
  26. Malik M, Camm J. Components of heart rate variability – what they really mean and what we really measure. Am J Cardiol. 1993;72:821–2.PubMedCrossRefGoogle Scholar
  27. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.PubMedCrossRefGoogle Scholar
  28. Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol Heart Circ Physiol. 2002;282:H6–20.PubMedGoogle Scholar
  29. Matthews SC, Paulus MP, Simmons AN, Nelesen RA, Dimsdale JE. Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage. 2004;22:1151–6.PubMedCrossRefGoogle Scholar
  30. Mazzeo AT, La Monaca E, Di Leo R, Vita G, Santamaria LB. Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care. Acta Anaesthesiol Scand. 2011;55:797–811.PubMedCrossRefGoogle Scholar
  31. Montano N, Lombardi F, Gnecchi Ruscone R. Spectral analysis of sympathetic discharge, R-R interval and systolic arterial pressure in decerebrate cats. J Auton Nerv Syst. 1992;40:21–32.PubMedCrossRefGoogle Scholar
  32. Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R. Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage. 2008;42:169–77.PubMedCrossRefGoogle Scholar
  33. Notarius CF, Floras JS. Limitations of the use of spectral analysis of heart rate variability for the estimation of cardiac sympathetic activity in heart failure. Europace. 2001;3:29–38.PubMedCrossRefGoogle Scholar
  34. Oya M, Itoh H, Kato K, Tanabe K, Murayama M. Effects of exercise training on the recovery of the autonomic nervous system and exercise capacity after acute myocardial infarction. Jpn Circ J. 1999;63:843–8.PubMedCrossRefGoogle Scholar
  35. Pagani M, Lombardi F, Guzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Maillaini A. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–93.PubMedCrossRefGoogle Scholar
  36. Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation. 1997;95:1441–8.PubMedCrossRefGoogle Scholar
  37. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151–3.PubMedGoogle Scholar
  38. Prokhorov MD, Ponomarenko VI, Gridnev VI, Bodrov MB, Bespyatov AB. Synchronization between main rhythmic processes in the human cardiovascular system. Phys Rev E. 2003;68:041913. doi: 10.1103/PhysRevE.68.041913.CrossRefGoogle Scholar
  39. Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M, Malliani A. Analysis of short term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol. 1990;258:H967–76.PubMedGoogle Scholar
  40. Ringwood JV, Malpas SC. Slow oscillations in blood pressure via a nonlinear feedback model. Am J Physiol. 2001;280:R1105–15.Google Scholar
  41. Rundqvist B, Elam M, Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation. 1997;95:169–75.PubMedCrossRefGoogle Scholar
  42. Saul JP, Rea RF, Eckberg DL, Berger RD, Cohen RJ. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am J Physiol. 1990;258:H713–21.PubMedGoogle Scholar
  43. Thayer JF. On the importance of inhibition: central and peripheral manifestations of nonlinear inhibitory processes in neural systems. Dose Response. 2006;4:2–21.PubMedCrossRefGoogle Scholar
  44. Thayer JF, Sternberg E. Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci. 2006;1088:361–72.PubMedCrossRefGoogle Scholar
  45. Thayer JF, Ahs F, Fredrikson M, Sollers 3rd JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36:747–56.PubMedCrossRefGoogle Scholar
  46. Tulppo M, Huikuri HV. Origin and significance of heart rate variability. J Am Coll Cardiol. 2004;16:2278–80.CrossRefGoogle Scholar
  47. Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppänen T, Mäkikallio TH, Huikuri HV. Physiological background of the loss of fractal heart rate dynamics. Circulation. 2005;112:314–9.PubMedCrossRefGoogle Scholar
  48. Uechi M, Asai K, Osaka M, Smith A, Dato N, Wagner TE, Ishikawa Y, Hayakawa H, Vatner DE, Shannon RP, Homcy CJ, Vatner SF. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsalpha. Circ Res. 1998;82:416–23.PubMedCrossRefGoogle Scholar
  49. Van de Borne P, Montano N, Pagani M, Oren R, Somers VK. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation. 1997;95:1449–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Gernot Ernst
    • 1
  1. 1.Kongsberg HospitalKongsbergNorway

Personalised recommendations