Skip to main content

Hemodynamic Perspectives of Edge-to-Edge Mitral Valve Repair

  • Chapter
  • First Online:
  • 3810 Accesses

Abstract

Hemodynamic effects of mitral regurgitation (MR) are dependent on multiple factors including the chronicity of the regurgitation, orifice size, etiology, and loading conditions. Although the MitraClip procedure is very safe, significant hemodynamic changes can occur intraprocedurally, early and late postprocedure. Assessment and management of these hemodynamic changes can be complex, although most patients remain clinically stable throughout the procedure. This chapter reviews the hemodynamic effects of MR in the acute and chronic setting, the intra- and periprocedural effects of the MitraClip, as well as the role of various drugs used in anesthesia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee JD, Sasayama S, Kihara Y, et al. Adaptations of the left ventricle to chronic volume overload induced by mitral regurgitation in conscious dogs. Heart Vessels. 1985;1:9–15.

    CAS  PubMed  Google Scholar 

  2. Gaasch WH, Meyer TE. Left ventricular response to mitral regurgitation: implications for management. Circulation. 2008;118:2298–303.

    PubMed  Google Scholar 

  3. Urschel CW, Covell JW, Sonnenblick EH, et al. Myocardial mechanics in aortic and mitral valvular regurgitation: the concept of instantaneous impedance as a determinant of the performance of the intact heart. J Clin Invest. 1968;47:867–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Leung DY, Griffin BP, Stewart WJ, et al. Left ventricular function after valve repair for chronic mitral regurgitation: predictive value of preoperative assessment of contractile reserve by exercise echocardiography. J Am Coll Cardiol. 1996;28:1198–205.

    CAS  PubMed  Google Scholar 

  5. Evans CL, Matsuoka Y. The effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J Physiol. 1915;49:378–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Urschel CW, Covell JW, Graham TP, et al. Effects of acute valvular regurgitation on the oxygen consumption of the canine heart. Circ Res. 1968;23:33–43.

    CAS  PubMed  Google Scholar 

  7. Sasayama S, Takahashi M, Osakada G, et al. Dynamic geometry of the left atrium and left ventricle in acute mitral regurgitation. Circulation. 1979;60:177–86.

    CAS  PubMed  Google Scholar 

  8. Stefanadis C, Dernellis J, Toutouzas P. A clinical appraisal of left atrial function. Eur Heart J. 2001;22:22–36.

    CAS  PubMed  Google Scholar 

  9. Roberts WC, Braunwald E, Morrow AG. Acute severe mitral regurgitation secondary to ruptured chordae tendineae: clinical, hemodynamic, and pathologic considerations. Circulation. 1966;33:58–70.

    CAS  PubMed  Google Scholar 

  10. Corvisart JN. An essay on the organic diseases of the heart and great vessels. Translated by Jacob Gates. Boston: Bradford & Read Co.; 1812.

    Google Scholar 

  11. Baxley WA, Kennedy JW, Feild B, Dodge HT. Hemodynamics in ruptured chordae tendineae and chronic rheumatic mitral regurgitation. Circulation. 1973;48:1288–94.

    CAS  PubMed  Google Scholar 

  12. Sasayama S, Takahashi M, Kawai C. Left atrial function in acute mitral regurgitation. Factors which modify the regurgitant volume. Herz. 1981;6:156–65.

    CAS  PubMed  Google Scholar 

  13. Haller JA, Morrow AG. Experimental mitral insufficiency. Surgery. 1955;38:518–26.

    PubMed  Google Scholar 

  14. Friedman AW, Stein L. Pitfalls in bedside diagnosis of severe acute mitral regurgitation. Clinical and hemodynamic features. Chest. 1980;78:436–41.

    CAS  PubMed  Google Scholar 

  15. Carley JE, Wong BY, Pugh DM, Dunn M. Clinical significance of the V wave in the main pulmonary artery. Am J Cardiol. 1977;39:982–5.

    CAS  PubMed  Google Scholar 

  16. Gorlin R, Dexter L. Hydraulic formula for the calculation of the cross-sectional area of the mitral valve during regurgitation. Am Heart J. 1952;43:188–205.

    CAS  PubMed  Google Scholar 

  17. Silverman ME, Hurst JW. The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Am Heart J. 1968;76:399–418.

    CAS  PubMed  Google Scholar 

  18. Yoran C, Yellin EL, Becker RM, et al. Dynamic aspects of acute mitral regurgitation: effects of ventricular volume, pressure and contractility on the effective regurgitant orifice area. Circulation. 1979;60:170–6.

    CAS  PubMed  Google Scholar 

  19. Yoran C, Yellin EL, Hori M, et al. Effects of heart rate on experimentally produced mitral regurgitation in dogs. Am J Cardiol. 1983;52:1345–9.

    CAS  PubMed  Google Scholar 

  20. Rosen SE, Borer JS, Hochreiter C, et al. Natural history of the asymptomatic/minimally symptomatic patient with severe mitral regurgitation secondary to mitral valve prolapse and normal right and left ventricular performance. Am J Cardiol. 1994;74:374–80.

    CAS  PubMed  Google Scholar 

  21. Ling LH, Enriquez-Sarano M, Seward JB, et al. Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med. 1996;335:1417–23.

    CAS  PubMed  Google Scholar 

  22. Enriquez-Sarano M, Tajik AJ. Natural history of mitral regurgitation due to flail leaflets. Eur Heart J. 1997;18:705–7.

    CAS  PubMed  Google Scholar 

  23. Enriquez-Sarano M, Basmadjian AJ, Rossi A, et al. Progression of mitral regurgitation: a prospective Doppler echocardiographic study. J Am Coll Cardiol. 1999;34:1137–44.

    CAS  PubMed  Google Scholar 

  24. Caulfield JB, Wolkowicz PE. Myocardial connective tissue alteration. Toxicol Pathol. 1990;18:488–96.

    CAS  PubMed  Google Scholar 

  25. Tezuka F. Morphometric analysis of cardiac hypertrophy: left ventricular shape and number of muscle-fiber layers across left ventricular wall. Tohoku J Exp Med. 1982;138:1–6.

    CAS  PubMed  Google Scholar 

  26. Zile MR, Tomita M, Nakano K, et al. Effects of left ventricular volume overload produced by mitral regurgitation on diastolic function. Am J Physiol. 1991;261:H1471–80.

    CAS  PubMed  Google Scholar 

  27. Wisenbaugh T, Spann JF, Carabello BA. Differences in myocardial performance and load between patients with similar amounts of chronic aortic versus chronic mitral regurgitation. J Am Coll Cardiol. 1984;3:916–23.

    CAS  PubMed  Google Scholar 

  28. Gaasch WH, Zile MR. Left ventricular function after surgical ­correction of chronic mitral regurgitation. Eur Heart J. 1991;12(Suppl B):48–51.

    PubMed  Google Scholar 

  29. Eckberg DL, Gault JH, Bouchard RL, et al. Mechanics of left ventricular contraction in chronic severe mitral regurgitation. Circulation. 1973;47:1252–9.

    CAS  PubMed  Google Scholar 

  30. Zile MR, Gaasch WH, Levine HJ. Left ventricular stress-dimension-shortening relations before and after correction of chronic aortic and mitral regurgitation. Am J Cardiol. 1985;56:99–105.

    CAS  PubMed  Google Scholar 

  31. Corin WJ, Monrad ES, Murakami T, et al. The relationship of afterload to ejection performance in chronic mitral regurgitation. Circulation. 1987;76:59–67.

    CAS  PubMed  Google Scholar 

  32. Ross Jr J, Sonnenblick EH, Taylor RR, et al. Diastolic geometry and sarcomere lengths in the chronically dilated canine left ventricle. Circ Res. 1971;28:49–61.

    PubMed  Google Scholar 

  33. Ross Jr J, McCullagh WH. Nature of enhanced performance of the dilated left ventricle in the dog during chronic volume overloading. Circ Res. 1972;30:549–56.

    PubMed  Google Scholar 

  34. Badke FR, Covell JW. Early changes in left ventricular regional dimensions and function during chronic volume overloading in the conscious dog. Circ Res. 1979;45:420–8.

    CAS  PubMed  Google Scholar 

  35. Ross Jr J. Adaptations of the left ventricle to chronic volume overload. Circ Res. 1974;35(suppl II):64–70.

    Google Scholar 

  36. Natarajan G, Nakhjavan FK, Kahn D, et al. Myocardial metabolic studies in prolapsing mitral leaflet syndrome. Circulation. 1975;52:1105–10.

    CAS  PubMed  Google Scholar 

  37. Conway MA, Bottomley PA, Ouwerkerk R, et al. Mitral regurgitation: impaired systolic function, eccentric hypertrophy, and increased severity are linked to lower phosphocreatine/ATP ratios in humans. Circulation. 1998;97:1716–23.

    CAS  PubMed  Google Scholar 

  38. Urabe Y, Mann DL, Kent RL, et al. Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res. 1992;70:131–47.

    CAS  PubMed  Google Scholar 

  39. Mulieri LA, Leavitt BJ, Martin BJ, et al. Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation. 1993;88:2700–4.

    CAS  PubMed  Google Scholar 

  40. Mehta RH, Supiano MA, Oral H, et al. Relation of systemic sympathetic nervous system activation to echocardiographic left ventricular size and performance and its implications in patients with mitral regurgitation. Am J Cardiol. 2000;86:1193–7.

    CAS  PubMed  Google Scholar 

  41. Rosenblatt A, Clark R, Burgess J, Cohn K. Echocardiographic assessment of the level of cardiac compensation in valvular heart disease. Circulation. 1976;54:509–18.

    CAS  PubMed  Google Scholar 

  42. Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): Developed in collaboration with the Society of cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation. 2008;118:e523–661.

    PubMed  Google Scholar 

  43. Vahanian A, Baumgartner H, Bax J, et al. Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J. 2007;28:230–68.

    PubMed  Google Scholar 

  44. Berko B, Gaasch WH, Tanigawa N, et al. Disparity between ejection and end-systolic indexes of left ventricular contractility in mitral regurgitation. Circulation. 1987;75:1310–9.

    CAS  PubMed  Google Scholar 

  45. Wisenbaugh T. Does normal pump function belie muscle dysfunction in patients with chronic severe mitral regurgitation? Circulation. 1988;77:515–25.

    CAS  PubMed  Google Scholar 

  46. Enriquez-Sarano M, Tajik AJ, Schaff HV, et al. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. Circulation. 1994;90:830–7.

    CAS  PubMed  Google Scholar 

  47. Rozich JD, Carabello BA, Usher BW, et al. Mitral valve replacement with and without chordal preservation in patients with chronic mitral regurgitation. Mechanisms for differences in postoperative ejection performance. Circulation. 1992;86:1718–26.

    CAS  PubMed  Google Scholar 

  48. Enriquez-Sarano M, Tajik AJ, Schaff HV, et al. Echocardiographic prediction of left ventricular function after correction of mitral regurgitation: results and clinical implications. J Am Coll Cardiol. 1994;24:1536–43.

    CAS  PubMed  Google Scholar 

  49. Crawford MH, Souchek J, Oprian CA, et al. Determinants of survival and left ventricular performance after mitral valve replacement. Department of Veterans Affairs Cooperative Study on Valvular Heart Disease. Circulation. 1990;81:1173–81.

    CAS  PubMed  Google Scholar 

  50. Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981;63:1223–7.

    CAS  PubMed  Google Scholar 

  51. Baan J, van der Velde ET, de Bruin HG, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70:812–23.

    CAS  PubMed  Google Scholar 

  52. van der Velde ET, Burkhoff D, Steendijk P, et al. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation. 1991;83:315–27.

    PubMed  Google Scholar 

  53. Schreuder JJ, Steendijk P, van der Veen FH, et al. Acute and short-term effects of partial left ventriculectomy in dilated cardiomyopathy: assessment by pressure-volume loops. J Am Coll Cardiol. 2000;36:2104–14.

    CAS  PubMed  Google Scholar 

  54. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    CAS  PubMed  Google Scholar 

  55. Gaemperli O, Moccetti M, Surder D, et al. Acute haemodynamic changes after percutaneous mitral valve repair: relation to mid-term outcomes. Heart. 2012;98:126–32.

    PubMed  Google Scholar 

  56. Siegel R, Biner S, Rafique AM, et al. The acute hemodynamic effects of MitraClip therapy. J Am Coll Cardiol. 2011;57:1658–65.

    PubMed  Google Scholar 

  57. Franzen O, van der Heyden J, Baldus S, et al. MitraClip(R) therapy in patients with end-stage systolic heart failure. Eur J Heart Fail. 2011;13:569–76.

    PubMed  Google Scholar 

  58. Braunwald E, Awe WC. The syndrome of severe mitral regurgitation with normal left atrial pressure. Circulation. 1963;27:29–35.

    CAS  PubMed  Google Scholar 

  59. Kageji Y, Oki T, Iuchi A, et al. Relationship between pulmonary capillary wedge V wave and transmitral and pulmonary venous flow velocity patterns in various heart diseases. J Card Fail. 1996;2:215–22.

    CAS  PubMed  Google Scholar 

  60. Freihage JH, Joyal D, Arab D, et al. Invasive assessment of mitral regurgitation: comparison of hemodynamic parameters. Catheter Cardiovasc Interv. 2007;69:303–12.

    PubMed  Google Scholar 

  61. Jilaihawi H, Makkar R, Hussaini A, et al. Contemporary application of cardiovascular hemodynamics: transcatheter mitral valve interventions. Cardiol Clin. 2011;29:201–9.

    PubMed  Google Scholar 

  62. Van Mieghem NM, Piazza N, Anderson RH, et al. Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation. J Am Coll Cardiol. 2010;56:617–26.

    PubMed  Google Scholar 

  63. Kaplan SR, Bashein G, Sheehan FH, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J. 2000;139:378–87.

    CAS  PubMed  Google Scholar 

  64. Timek TA, Miller DC. Experimental and clinical assessment of mitral annular area and dynamics: what are we actually measuring? Ann Thorac Surg. 2001;72:966–74.

    CAS  PubMed  Google Scholar 

  65. Flachskampf FA, Chandra S, Gaddipatti A, et al. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr. 2000;13:277–87.

    CAS  PubMed  Google Scholar 

  66. Komoda T, Hetzer R, Uyama C, et al. Mitral annular function assessed by 3D imaging for mitral valve surgery. J Heart Valve Dis. 1994;3:483–90.

    CAS  PubMed  Google Scholar 

  67. Rassi Jr A, Crawford MH, Richards KL, Miller JF. Differing mechanisms of exercise flow augmentation at the mitral and aortic valves. Circulation. 1988;77:543–51.

    PubMed  Google Scholar 

  68. Gorman 3rd JH, Jackson BM, Moainie SL, et al. Influence of inotropy and chronotropy on the mitral valve sphincter mechanism. Ann Thorac Surg. 2004;77:852–7; discussion 857–58.

    PubMed  Google Scholar 

  69. Hecker SL, Zabalgoitia M, Ashline P, et al. Comparison of exercise and dobutamine stress echocardiography in assessing mitral stenosis. Am J Cardiol. 1997;80:1374–7.

    CAS  PubMed  Google Scholar 

  70. Glasson JR, Komeda M, Daughters GT, et al. Most ovine mitral annular 3-D size reduction occurs before ventricular systole and is abolished with ventricular pacing. Circulation. 1997;96:II-115–23.

    Google Scholar 

  71. Maisano F, Vigano G, Blasio A, et al. Surgical isolated edge-to-edge mitral valve repair without annuloplasty: clinical proof of the principle for an endovascular approach. EuroIntervention. 2006;2:181–6.

    PubMed  Google Scholar 

  72. Weil J, Eschenhagen T, Hirt S, et al. Preserved Frank-Starling mechanism in human end stage heart failure. Cardiovasc Res. 1998;37:541–8.

    CAS  PubMed  Google Scholar 

  73. Holubarsch C, Ruf T, Goldstein DJ, et al. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels. Circulation. 1996;94:683–9.

    CAS  PubMed  Google Scholar 

  74. Gill RM, Jones BD, Corbly AK, et al. Exhaustion of the Frank-Starling mechanism in conscious dogs with heart failure induced by chronic coronary microembolization. Life Sci. 2006;79:536–44.

    CAS  PubMed  Google Scholar 

  75. Gewillig M, Brown SC, Eyskens B, et al. The Fontan circulation: who controls cardiac output? Interact Cardiovasc Thorac Surg. 2010;10:428–33.

    PubMed  Google Scholar 

  76. Kirklin J. Replacement of mitral valve for mitral incompetence. Surgery. 1972;72:827–36.

    CAS  PubMed  Google Scholar 

  77. Acker MA. Should moderate or greater mitral regurgitation be repaired in all patients with LVEF <30%? Mitral valve repair in patients with advanced heart failure and severe functional mitral insufficiency reverses left ventricular remodeling and improves symptoms. Circ Heart Fail. 2008;1:281–4.

    PubMed  Google Scholar 

  78. Yun KL, Rayhill SC, Niczyporuk MA, et al. Mitral valve replacement in dilated canine hearts with chronic mitral regurgitation. Importance of the mitral subvalvular apparatus. Circulation. 1991;84:III112–24.

    CAS  PubMed  Google Scholar 

  79. Rankin JS, Nicholas LM, Kouchoukos NT. Experimental mitral regurgitation: effects on left ventricular function before and after elimination of chronic regurgitation in the dog. J Thorac Cardiovasc Surg. 1975;70:478–88.

    CAS  PubMed  Google Scholar 

  80. Spratt JA, Olsen CO, Tyson Jr GS, et al. Experimental mitral regurgitation. Physiological effects of correction on left ventricular dynamics. J Thorac Cardiovasc Surg. 1983;86:479–89.

    CAS  PubMed  Google Scholar 

  81. Buckberg GD, Fixler DE, Archie JP, Hoffman JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res. 1972;30:67–81.

    CAS  PubMed  Google Scholar 

  82. Feldman T, Foster E, Glower DG, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364:1395–406.

    CAS  PubMed  Google Scholar 

  83. Umana JP, Salehizadeh B, DeRose Jr JJ, et al. “Bow-tie” mitral valve repair: an adjuvant technique for ischemic mitral regurgitation. Ann Thorac Surg. 1998;66:1640–6.

    CAS  PubMed  Google Scholar 

  84. Hori H, Fukunaga S, Arinaga K, et al. Edge-to-edge repair for mitral regurgitation: a clinical and exercise echocardiographic study. J Heart Valve Dis. 2008;17:476–84.

    PubMed  Google Scholar 

  85. Agricola E, Maisano F, Oppizzi M, et al. Mitral valve reserve in double-orifice technique: an exercise echocardiographic study. J Heart Valve Dis. 2002;11:637–43.

    PubMed  Google Scholar 

  86. Borghetti V, Campana M, Scotti C, et al. Preliminary observations on haemodynamics during physiological stress conditions following ‘double-orifice’ mitral valve repair. Eur J Cardiothorac Surg. 2001;20:262–8; discussion 268–9.

    CAS  PubMed  Google Scholar 

  87. Herrmann HC, Kar S, Siegel R, et al. Effect of percutaneous mitral repair with the MitraClip device on mitral valve area and gradient. EuroIntervention. 2009;4:437–42.

    PubMed  Google Scholar 

  88. Levin TN, Feldman T, Carroll JD. Effect of atrial septal occlusion on mitral area after Inoue balloon valvotomy. Cathet Cardiovasc Diagn. 1994;33:308–14.

    CAS  PubMed  Google Scholar 

  89. Bovill JG. Intravenous anesthesia for the patient with left ventricular dysfunction. Semin Cardiothorac Vasc Anesth. 2006;10:43–8.

    CAS  PubMed  Google Scholar 

  90. Taneyama C, Goto H, Kohno N, et al. Effects of fentanyl, diazepam, and the combination of both on arterial baroreflex and sympathetic nerve activity in intact and baro-denervated dogs. Anesth Analg. 1993;77:44–8.

    CAS  PubMed  Google Scholar 

  91. Ludwig LM, Patel HH, Gross GJ, et al. Morphine enhances pharmacological preconditioning by isoflurane: role of mitochondrial K(ATP) channels and opioid receptors. Anesthesiology. 2003;98:705–11.

    CAS  PubMed  Google Scholar 

  92. Pagel PS, Hettrick DA, Kersten JR, et al. Cardiovascular effects of propofol in dogs with dilated cardiomyopathy. Anesthesiology. 1998;88:180–9.

    CAS  PubMed  Google Scholar 

  93. Gelissen HP, Epema AH, Henning RH, et al. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle. Anesthesiology. 1996;84:397–403.

    CAS  PubMed  Google Scholar 

  94. Lowe D, Hettrick DA, Pagel PS, Warltier DC. Propofol alters left ventricular afterload as evaluated by aortic input impedance in dogs. Anesthesiology. 1996;84:368–76.

    CAS  PubMed  Google Scholar 

  95. Bennett SR, Griffin SC. Sevoflurane versus isoflurane in patients undergoing coronary artery bypass grafting: a hemodynamic and recovery study. J Cardiothorac Vasc Anesth. 1999;13:666–72.

    CAS  PubMed  Google Scholar 

  96. Bennett SR, Griffin SC. Sevoflurane versus isoflurane in patients undergoing valvular cardiac surgery. J Cardiothorac Vasc Anesth. 2001;15:175–8.

    CAS  PubMed  Google Scholar 

  97. Bach DS, Deeb GM, Bolling SF. Accuracy of intraoperative transesophageal echocardiography for estimating the severity of functional mitral regurgitation. Am J Cardiol. 1995;76:508–12.

    CAS  PubMed  Google Scholar 

  98. Grewal KS, Malkowski MJ, Piracha AR, et al. Effect of ­general anesthesia on the severity of mitral regurgitation by transesophageal echocardiography. Am J Cardiol. 2000;85:199–203.

    CAS  PubMed  Google Scholar 

  99. Shiran A, Merdler A, Ismir E, et al. Intraoperative transesophageal echocardiography using a quantitative dynamic loading test for the evaluation of ischemic mitral regurgitation. J Am Soc Echocardiogr. 2007;20:690–7.

    PubMed  Google Scholar 

  100. Tatsumi K, Kawai H, Sugiyama D, et al. Dobutamine-induced improvement in inferior myocardial contractile function predicts reduction in functional mitral regurgitation: a study using tissue Doppler strain rate imaging. Circ Cardiovasc Imaging. 2010;3:638–46.

    PubMed  Google Scholar 

  101. Lapu-Bula R, Robert A, Van Craeynest D, et al. Contribution of exercise-induced mitral regurgitation to exercise stroke volume and exercise capacity in patients with left ventricular systolic dysfunction. Circulation. 2002;106:1342–8.

    PubMed  Google Scholar 

  102. Lancellotti P, Lebrun F, Pierard LA. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2003;42:1921–8.

    PubMed  Google Scholar 

  103. Rosario LB, Stevenson LW, Solomon SD, et al. The mechanism of decrease in dynamic mitral regurgitation during heart failure treatment: importance of reduction in the regurgitant orifice size. J Am Coll Cardiol. 1998;32:1819–24.

    CAS  PubMed  Google Scholar 

  104. Mihalatos DG, Gopal AS, Kates R, et al. Intraoperative assessment of mitral regurgitation: role of phenylephrine challenge. J Am Soc Echocardiogr. 2006;19:1158–64.

    PubMed  Google Scholar 

  105. Byrne JG, Aklog L, Adams DH. Assessment and management of functional or ischaemic mitral regurgitation. Lancet. 2000;355:1743–4.

    CAS  PubMed  Google Scholar 

  106. Dion R, Benetis R, Elias B, et al. Mitral valve procedures in ischemic regurgitation. J Heart Valve Dis. 1995;4 Suppl 2:S124–9; discussion S129-131.

    PubMed  Google Scholar 

  107. Konstadt SN, Louie EK, Shore-Lesserson L, et al. The effects of loading changes on intraoperative Doppler assessment of mitral regurgitation. J Cardiothorac Vasc Anesth. 1994;8:19–23.

    CAS  PubMed  Google Scholar 

  108. Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension. Anaesthesia. 2002;57:9–14.

    CAS  PubMed  Google Scholar 

  109. Keren G, Laniado S, Sonnenblick EH, Lejemtel TH. Dynamics of functional mitral regurgitation during dobutamine therapy in patients with severe congestive heart failure: a Doppler echocardiographic study. Am Heart J. 1989;118:748–54.

    CAS  PubMed  Google Scholar 

  110. Abe Y, Imai T, Ohue K, et al. Relation between reduction in ischaemic mitral regurgitation and improvement in regional left ventricular contractility during low dose dobutamine stress echocardiography. Heart. 2005;91:1092–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Keren G, Katz S, Strom J, et al. Dynamic mitral regurgitation. An important determinant of the hemodynamic response to load alterations and inotropic therapy in severe heart failure. Circulation. 1989;80:306–13.

    CAS  PubMed  Google Scholar 

  112. El-Tahan MR. Preoperative ephedrine counters hypotension with propofol anesthesia during valve surgery: a dose dependent study. Ann Card Anaesth. 2011;14:30–40.

    PubMed  Google Scholar 

  113. Bangash MN, Kong ML, Pearse RM. Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol. 2012;165:2015–33.

    Google Scholar 

  114. Branzi G, Malfatto G, Villani A, et al. Acute effects of levosimendan on mitral regurgitation and diastolic function in patients with advanced chronic heart failure. J Cardiovasc Med (Hagerstown). 2010;11:662–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poay Huan Loh MB, BCh, BAO, MRCP(UK) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Loh, P.H., Veien, K.T., Gaemperli, O., Corti, R. (2013). Hemodynamic Perspectives of Edge-to-Edge Mitral Valve Repair. In: Feldman, T., Franzen, O., Low, R., Rogers, J., Yeo, K.K. (eds) Atlas of Percutaneous Edge-to-Edge Mitral Valve Repair. Springer, London. https://doi.org/10.1007/978-1-4471-4294-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4294-2_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4293-5

  • Online ISBN: 978-1-4471-4294-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics