Advertisement

Discrete-Event Systems in a Dioid Framework: Modeling and Analysis

  • Thomas Brunsch
  • Jörg Raisch
  • Laurent Hardouin
  • Olivier Boutin
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 433)

Abstract

Dioids, or idempotent semirings, are an algebraic structure that can be used to formally generate linear models for a class of timed discrete-event systems. A well-known example is the so-called max-plus algebra, which allows a linear representation of timed event graphs. This chapter will introduce basic notions of dioid theory, and will provide simple motivational examples. In particular, it will show how to generate compact models in a specific dioid, denoted by \(\mathcal{M}^{ax}_{in}[\gamma ,\delta] \); this is a quotient dioid in the set of formal power series in two variables with integer exponents and Boolean coefficients. This chapter will also discuss how to analyze important system aspects, such as the achievable throughput, in this framework. To demonstrate the usefulness of this approach for large real-world systems, it will be applied to High-Throughput Screening (HTS) problems, which have served as a benchmark within the DISC project.

Keywords

Transportation Network Formal Power Series Single Batch Transition Delay Idempotent Semiring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity–An Algebra for Discrete Event Systems. John Wiley and Sons (1992) Web Edition, http://www-rocq.inria.fr/metalau/cohen/SED/SED1-book.html (2012)
  2. 2.
    Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer (2005)Google Scholar
  3. 3.
    Bosscher, D., Polak, I., Vaandrager, F.: Verification of an Audio Control Protocol. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 170–192. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Cassandras, C.G., Lafortune, S., Olsder, G.J.: Introduction to the modelling, control and optimization of discrete event systems. In: Isidori, A. (ed.) Trends in Control–A European Perspective, pp. 217–291 (1995)Google Scholar
  5. 5.
    Cohen, G., Moller, P., Quadrat, J.-P., Viot, M.: Algebraic tools for the performance evaluation of discrete event systems. Proceedings of the IEEE 77(1), 39–58 (1989)CrossRefGoogle Scholar
  6. 6.
    Cottenceau, B., Hardouin, L., Lhommeau, M., Boimond, J.L.: Data processing tool for calculation in dioid. In: Proc. 5th Int. Workshop on Discrete Event Systems, Ghent, Belgium (2000)Google Scholar
  7. 7.
    Cottenceau, B., Hardouin, L., Boimond, J.L., Ferrier, J.L.: Model reference control for timed event graphs in dioids. Automatica 37(9), 1451–1458 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Cuninghame-Green, R.A.: Minimax algebra. Lecture Notes in Economics and Mathematical Systems. Springer (1979)Google Scholar
  9. 9.
    Cuninghame-Green, R.A.: Minimax algebra and applications. Fuzzy Sets and Systems 41, 251–267 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gaubert, S., Klimann, C.: Rational computation in dioid algebra and its application to performance evaluation of discrete event systems. In: Gérard, J., Lamnabhi-Lagarrigue, F. (eds.) Algebraic Computing in Control. LNCIS, vol. 165, pp. 241–252. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  11. 11.
    Gaubert, S.: Methods and Applications of (max,+) Linear Algebra. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 261–282. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Gérard, J., Lamnabhi-Lagarrigue, F. (eds.): Algebraic Computing in Control. LNCIS, vol. 165. Springer (1991)Google Scholar
  13. 13.
    Harding, D., Banks, M., Fogarty, S., Binnie, A.: Development of an automated high-throughput screening system: a case history. Drug Discovery Today 2(9), 385–390 (1997)CrossRefGoogle Scholar
  14. 14.
    Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work–Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton University Press, Princeton (2006)MATHGoogle Scholar
  15. 15.
    Isidori, A. (ed.): Trends in Control – A European Perspective. Springer (1995)Google Scholar
  16. 16.
    Lhommeau, M., Hardouin, L., Cottenceau, B.: Disturbance decoupling of timed event graphs by output feedback controller. In: Proc. 6th Int. Workshop on Discrete Event Systems, Zaragoza, Spain (2002)Google Scholar
  17. 17.
    Maia, C.A., Hardouin, L., Santos-Mendes, R., Cottenceau, B.: Optimal closed-loop control of timed event graphs in dioids. IEEE Transactions on Automatic Control 48(12), 2284–2287 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mayr, L.M., Fuerst, P.: The future of high-throughput screening. Journal of Biomolecular Screening 13(6), 443–448 (2008)CrossRefGoogle Scholar
  19. 19.
    Reischuk, R., Morvan, M. (eds.): STACS 1997. LNCS, vol. 1200. Springer, Heidelberg (1997)MATHGoogle Scholar
  20. 20.
    Rogers, M.V.: High-throughput screening. Drug Discovery Today 2(11), 503–504 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Thomas Brunsch
    • 1
    • 3
  • Jörg Raisch
    • 1
    • 2
  • Laurent Hardouin
    • 3
  • Olivier Boutin
    • 4
  1. 1.Fachgebiet RegelungssystemeTechnische Universität BerlinBerlinGermany
  2. 2.Fachgruppe System- und RegelungstheorieMax-Planck-Institut für Dynamik komplexer technischer SystemeMagdeburgGermany
  3. 3.LUNAM, University of Angers, LISA, ISTIAAngersFrance
  4. 4.Calle Santiago 2 – 4∘CCadizSpain

Personalised recommendations