Structural Methods for the Control of Discrete Event Dynamic Systems – The Case of the Resource Allocation Problem

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 433)

Abstract

The study of resource allocation related aspects is a fundamental issue in the design and control of Discrete Event Dynamic Systems (DEDSs) belonging to domains ranging from multithreaded software applications to Flexible Manufacturing Systems (FMSs). The formulation of this application-driven problem in terms of Petri nets leads to a family of net models with a specific structure-based characterization. These net subclasses are derived from a specific methodology to abstract the system in order to obtain its Resource Allocation System (RAS) view, which we describe in this chapter. After that, we concentrate our efforts in the characterization of the liveness of such models. The structural causes of the non-liveness (deadlock of some processes) are also discussed. These will lay the foundations to introduce control elements which forbid all the bad states enforcing the liveness property. The methods to compute the control are based on structural techniques avoiding the construction of the reachability graph.

Keywords

Transportation Kelly Allo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Best, E., Voss, K.: Free Choice Systems Have Home States. Acta Informatica 21, 89–100 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cano, E.-E., Rovetto, C.-A., Colom, J.-M.: On the Computation of the Minimal Siphons of S4PR nets from a Generating Family of Siphons. In: Proc. 15th IEEE International Conference on Emerging Technologies and Factory Automation, Bilbao, Spain (2010)Google Scholar
  3. 3.
    Chu, F., Xie, X.: Deadlock Analysis of Petri Nets using Siphons and Mathematical Programming. IEEE Transactions on Robotics and Automation 13(6), 793–804 (1997)CrossRefGoogle Scholar
  4. 4.
    Colom, J.M., Silva, M.: Improving the Linearly Based Characterization of P/T Nets. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 113–145. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Colom, J.-M.: The Resource Allocation Problem in Flexible Manufacturing Systems. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 23–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Ezpeleta, J., Colom, J.-M., Martínez, J.: A Petri net Based Deadlock Prevention Policy for Flexible Manufacturing Systems. IEEE Transactions on Robotics and Automation 2(11), 173–184 (1995)CrossRefGoogle Scholar
  7. 7.
    Ezpeleta, J., Garcia-Vallés, F., Colom, J.-M.: A Class of Well Structured Petri Nets for Flexible Manufacturing Systems. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 64–83. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Ezpeleta, J., Tricas, F., García–Vallés, F., Colom, J.-M.: A Banker’s Solution for Deadlock Avoidance in FMS with Flexible Routing and Multiresource States. IEEE Transactions on Robotics and Automation 18(4), 621–625 (2002)CrossRefGoogle Scholar
  9. 9.
    Ezpeleta, J., Recalde, L.: A Deadlock Avoidance Approach for Non–Sequential Resource Allocation Systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 34(1), 93–101 (2004)CrossRefGoogle Scholar
  10. 10.
    Fanti, M.P., Maione, B., Mascolo, S., Turchiano, B.: Event-Based Feedback Control for Deadlock Avoidance in Flexible Production Systems. IEEE Transactions on Robotics and Automation 13(3), 347–363 (1997)CrossRefGoogle Scholar
  11. 11.
    Ghaffari, A., Rezg, N., Xie, X.: Design of a Live and Maximally Permissive Petri Net Controller using the Theory of Regions. IEEE Transactions on Robotics 19(1), 137–141 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hu, H., Zhou, M.C., Li, Z.W.: Supervisor Optimization for Deadlock Resolution in Automated Manufacturing Systems With Petri Nets. IEEE Transactions on Automation Science and Engineering 8(4), 794–804 (2011)CrossRefGoogle Scholar
  13. 13.
    Jeng, M.-D., Xie, X.-L., Peng, M.-Y.: Process Nets with Resources for Manufacturing Modeling and their Analysis. IEEE Transactions on Robotics 18(6), 875–889 (2002)CrossRefGoogle Scholar
  14. 14.
    Lautenbach, K., Thiagarajan, P.S.: Analysis of a Resource Allocation Problem Using Petri Nets. In: Proc. 1st European Conf. on Parallel and Distributed Processing, France (1979)Google Scholar
  15. 15.
    Li, Z.-W., Zhou, M.-C.: Control of Elementary and Dependent Siphons in Petri Nets and Their Application. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 38(1), 133–148 (2008)CrossRefGoogle Scholar
  16. 16.
    Li, Z.-W., Zhou, M.-C.: Deadlock Resolution in Automated Manufacturing Systems: A Novel Petri Net Approach. Springer, New York (2009)Google Scholar
  17. 17.
    López-Grao, J.-P., Colom, J.-M.: Resource Allocation Systems: Some Complexity Results on the S4PR Class. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 323–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    López–Grao, J.-P., Colom, J.-M.: Lender Processes Competing for Shared Resources: Beyond the S4PR Paradigm. In: Proc. 2006 IEEE Int. Conf. on Systems, Man and Cybernetics, Taipei, Taiwan (2006)Google Scholar
  19. 19.
    López–Grao, J.-P., Colom, J.-M.: On the Deadlock Analysis of Multithreaded Control Software. In: Proc. 16th IEEE Int. Conf. on Emerging Technologies and Factory Automation, Toulouse, France (2006)Google Scholar
  20. 20.
    López-Grao, J.-P., Colom, J.-M.: A Petri Net Perspective on the Resource Allocation Problem in Software Engineering. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900, pp. 181–200. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    López–Grao, J.-P.: Contributions to the Deadlock Problem in Multithreaded Software Applications Observed as Resource Allocation Systems. PhD Thesis. University of Zaragoza, Spain (2012)Google Scholar
  22. 22.
    Park, J., Reveliotis, S.A.: Deadlock Avoidance in Sequential Resource Allocation Systems with Multiple Resource Acquisitions and Flexible Routings. IEEE Transactions on Automatic Control 46(10), 1572–1583 (2001)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Piroddi, L., Cordone, R., Fumagalli, I.: Combined Siphon and Marking Generation for Deadlock Prevention in Petri Nets. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(3), 650–661 (2009)CrossRefGoogle Scholar
  24. 24.
    Reveliotis, S.A.: Real-Time Management of Resource Allocation Systems: A Discrete Event Systems Approach. International Series in Operations Research & Management Science (2004)Google Scholar
  25. 25.
    Rovetto, C.-A.: Métodos Basados en Redes de Petri para el Diseño de Algoritmos de Encaminamiento Adaptativos Mínimos Libres de Bloqueos. PhD Thesis. University of Zaragoza, Spain (2011)Google Scholar
  26. 26.
    Silva, M., Colom, J.-M.: On the Computation of Structural Synchronic Invariants in P/T Nets. In: Rozenberg, G. (ed.) APN 1988. LNCS, vol. 340, pp. 386–417. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  27. 27.
    Tricas, F.: Deadlock Analysis, Prevention and Avoidance in Sequential Resource Allocation Systems. PhD Thesis. University of Zaragoza, Spain (2003)Google Scholar
  28. 28.
    Tricas, F., García–Valles, F., Colom, J.-M., Ezpeleta, J.: A Petri net Structure-Based Deadlock Prevention Solution for Sequential Resource Allocation Systems. In: Proc. 2005 Int. Conf. on Robotics and Automation, Barcelona, Spain (2005)Google Scholar
  29. 29.
    Xie, X., Jeng, M.-D.: ERCN-merged Nets and Their Analysis using Siphons. IEEE Transactions on Robotics and Automation 29(4), 692–703 (1999)Google Scholar
  30. 30.
    Wang, Y., Liao, H., Reveliotis, S.A., Kelly, T., Mahlke, S., Lafortune, S.: Gadara Nets: Modeling and Analyzing Lock Allocation for Deadlock Avoidance in Multithreaded Software. In: Proc. 49th IEEE Conf. on Decision and Control, Atlanta, Georgia, USA (2009)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Computer Science and Systems EngineeringUniversity of ZaragozaZaragozaSpain
  2. 2.Aragon Institute of Engineering Research (I3A)University of ZaragozaZaragozaSpain

Personalised recommendations