Skip to main content

General Principles of Cardiac Magnetic Resonance Imaging

  • 1487 Accesses

Abstract

A basic understanding of the underlying principles of cardiovascular magnetic resonance imaging (CMR) and methods used to form images is important if one is to successfully apply this technique in clinical practice or research and interpret it correctly. This section will provide a brief overview of the fundamentals and some techniques in CMR imaging. For more information, the reader is referred to the references in this chapter or the larger textbooks on fundamentals of magnetic resonance imaging as well as other chapters in this book [1].

Keywords

  • Congenital Heart Disease
  • Cardiovascular Magnetic Resonance
  • Velocity Mapping
  • Normal Myocardium
  • Atrioventricular Valve

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4267-6_1
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4267-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11
Fig. 1.12
Fig. 1.13
Fig. 1.14
Fig. 1.15
Fig. 1.16
Fig. 1.17
Fig. 1.18
Fig. 1.19
Fig. 1.20
Fig. 1.21
Fig. 1.22
Fig. 1.23
Fig. 1.24
Fig. 1.25
Fig. 1.26

References

  1. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part I. J Cardiovasc Magn Reson. 2010;12(1):71.

    PubMed  CrossRef  Google Scholar 

  2. Simonetti OP, Finn JP, White RD, Laub G, Henry DA. “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology. 1996;199:49–57.

    PubMed  CAS  Google Scholar 

  3. Carr JC, Simonetti OP, Bundy JM, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219:828–34.

    PubMed  CAS  Google Scholar 

  4. Shankaranarayanan A, Simonetti OP, Laub G, Lewin JS, Duerk JL. Segmented k-space and real-time cardiac cine MR imaging with radial trajectories. Radiology. 2001;221:827–36.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology. 1991;178:357–60.

    PubMed  CAS  Google Scholar 

  6. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med. 2001;45:846–52.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Malviya S, Voepel-Lewis T, Eldevik OP, Rockwell DT, Wong JH, Tait AR. Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth. 2000;84:743–8.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Fogel MA, Weinberg P, Parave E, Harris C, Montenegro L, Concepcion M. Safety and efficacy of deep sedation in infants, children and adolescents undergoing cardiac magnetic resonance. J Pediatr. 2008;152:534–9.

    PubMed  CrossRef  Google Scholar 

  10. Malviya S, Voepel-Lewis T, Tait AR. Adverse events and risk factors associated with the sedation of children by nonanesthesiologists. Anesth Analg. 1997;85:1207–13.

    PubMed  CAS  Google Scholar 

  11. Bluemke DA, Breiter SN. Sedation procedures in MR imaging: safety, effectiveness, and nursing effect on examinations. Radiology. 2000;216:645–52.

    PubMed  CAS  Google Scholar 

  12. Shepherd JK, Hall-Craggs MA, Finn JP, Bingham RM. Sedation in children scanned with high-field magnetic resonance: experience at the Hospital for Sick Children, Great Ormond Street. Br J Radiol. 1990;63:794–7.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Vade A, Sukhani R, Dolenga M, Habisohn-Schuck C. Choral hydrate sedation of children undergoing CT and MR imaging: safety as judged by American Academy of Pediatrics guidelines. Am J Roentgenol. 1995;165:905–9.

    CAS  Google Scholar 

  14. Volle E, Park W, Kaufmann HJ. MRI examination and monitoring of pediatric patients under sedation. Pediatr Radiol. 1996;26:280–1.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Lawson GR. Sedation of children for magnetic resonance imaging. Arch Dis Child. 2000;82:150–4.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Didier D, Ratib O, Beghetti M, et al. Morphologic and functional evaluation of congenital heart disease by magnetic resonance imaging. J Magn Reson Imaging. 1999;10:639–55.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Fogel MA, Harris M, Harris C. Ultrafast cardiac magnetic resonance imaging of infants <6 months of age without sedation or cardiac anesthesia in <5 minutes: competition for computerized tomography? J Am Coll Cardiol. 2008;51(No 10, suppl A):A86–7 (abstract 1011–117).

    Google Scholar 

  18. Nayak KS, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM, Meyer CH. Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med. 2005;53:1468–73.

    PubMed  CrossRef  Google Scholar 

  19. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13:2409–18.

    PubMed  CrossRef  Google Scholar 

  20. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham Jr TP. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1:7–21.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Marcus JT, DeWaal LK, Götte MJ, van der Geest RJ, Heethaar RM, Van Rossum AC. MRI-derived left ventricular function parameters and mass in healthy young adults: relation with gender and body size. Int J Card Imaging. 1999;15:411–9.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Sandstede J, Lipke C, Beer M, Hofmann S, Pabst T, Kenn W, Neubauer S, Hahn D. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol. 2000;10:438–42.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Mostbeck GH, Caputo GR, Higgins CB. MR measurement of blood flow in the cardiovascular system. AJR Am J Roentgenol. 1992;159:453–61.

    PubMed  CAS  Google Scholar 

  24. Chatzimavroudis GP, Oshinski JN, Franch RH, Walker PG, Yoganathan AP, Pettigrew RI. Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J Cardiovasc Magn Reson. 2001;3:11–9.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Brenner LD, Caputo GR, Mostbeck G, et al. Quantification of left-to-right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol. 1992;20:1246–50.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Rebergen SA, Niezen RA, Helbing WA, et al. Cine gradient-echo MR imaging and MR velocity mapping in the evaluation of congenital heart disease. Radiographics. 1996;16:467–81.

    PubMed  CAS  Google Scholar 

  27. John AS, Dill T, Brandt RR, Rau M, Ricken W, Bachmann G, Hamm CW. Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standards? J Am Coll Cardiol. 2003;42:519–26.

    PubMed  CrossRef  Google Scholar 

  28. Schlosser T, Malyar N, Jochims M, Breuckmann F, Hunold P, Bruder O, Erbel R, Barkhausen J. Quantification of aortic valve stenosis in MRI-comparison of steady-state free precession and fast low-angle shot sequences. Eur Radiol. 2007;17:1284–90.

    PubMed  CrossRef  Google Scholar 

  29. Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, Reiber JH, de Roos A, van der Geest RJ. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008;249:792–800.

    PubMed  CrossRef  Google Scholar 

  30. Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB. In vivo validation of MR velocity imaging. J Comput Assist Tomogr. 1987;11:751–6.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Caputo GR, Kondo C, Masui T, Geraci SJ, Foster E, O’Sullivan MM, Higgins CB. Right and left lung perfusion:in vitro andin vivo validation with oblique-angle, velocity-encoded cine MR imaging. Radiology. 1991;180:693–8.

    PubMed  CAS  Google Scholar 

  32. Rebergen SA, Chin JGJ, Ottenkamp J, van der Wall EE, de Roos A. Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot: volumetric quantification by MR velocity mapping. Circulation. 1993;88:2257–66.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Beerbaum P, Korperich H, Barth P, et al. Non-invasive quantification of left-to-right shunt in pediatric patients. Phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001;103:2476–82.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Harris MA, Weinberg PM, Whitehead KK, Fogel MA. Usefulness of branch pulmonary artery regurgitant fraction to estimate the relative right and left pulmonary vascular resistances in congenital heart disease. Am J Cardiol. 2005;95:1514–7.

    PubMed  CrossRef  Google Scholar 

  35. Steffens JC, Bourne MW, Sakuma H, O’Sullivan M, Higgins CB. Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation. 1994;90(2):937–43.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Whitehead KK, Gillespie MJ, Harris MA, Fogel MA, Rome JJ. Noninvasive quantification of systemic to pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circ Cardiovasc Imaging. 2009;2:405–11. Epub 2009 Jul 8. 2009.

    PubMed  CrossRef  Google Scholar 

  37. Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, Jamorski MT, Webb GD, Siu SC. Outcomes in adults with bicuspid aortic valves. JAMA. 2008;300:1317–25.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Gleeson TG, Mwangi I, Horgan SJ, Cradock A, Fitzpatrick P, Murray JG. Steady-state free-precession (SSFP) cine MRI in distinguishing normal and bicuspid aortic valves. J Magn Reson Imaging. 2008;28:873–8.

    PubMed  CrossRef  Google Scholar 

  39. Thomson LE, Kim RJ, Judd RM. Magnetic resonance imaging for the assessment of myocardial viability. J Magn Reson Imaging. 2004;19:771–88.

    PubMed  CrossRef  Google Scholar 

  40. Kwong RY, Korlakunta H. Diagnostic and prognostic value of cardiac magnetic resonance imaging in assessing myocardial viability. Top Magn Reson Imaging. 2008;19:15–24.

    PubMed  CrossRef  Google Scholar 

  41. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet. 2001;357:21–8.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218:215–23.

    PubMed  CAS  Google Scholar 

  44. Moon JC, Reed E, Sheppard MN, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43:2260–4.

    PubMed  CrossRef  Google Scholar 

  45. Babu-Narayan SV, Goktekin O, Moon JC, et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111:2091–8.

    PubMed  CrossRef  Google Scholar 

  46. Babu-Narayan SV, Kilner PJ, Li W, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006;113:405–13.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Wald RM, Haber I, Wald R, Valente AM, Powell AJ, Geva T. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation. 2009;119:1370–7.

    PubMed  CrossRef  Google Scholar 

  48. Choudhury L, Mahrholdt G, Wagner A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:2156–64.

    PubMed  CrossRef  Google Scholar 

  49. Teraoka K, Hirano M, Ookubo H, et al. Delayed contrast enhancement of MRI in hypertrophic cardiomyopathy. Magn Reson Imaging. 2004;22:155–61.

    PubMed  CrossRef  Google Scholar 

  50. Moon J, McKenna W, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003;41:1561–7.

    PubMed  CrossRef  Google Scholar 

  51. Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. AJR Am J Roentgenol. 1999;172:1061–5.

    PubMed  CAS  Google Scholar 

  52. Oncel D, Oncel G, Türkoğlu I. Accuracy of MR coronary angiography in the evaluation of coronary artery stenosis. Diagn Interv Radiol. 2008;14:153–8.

    PubMed  Google Scholar 

  53. Donofrio MT, Clark BJ, Ramaciotti C, Jacobs ML, Fellows KE, Weinberg PM, Fogel MA. Regional wall motion and strain of transplanted hearts in pediatric patients using magnetic resonance tagging. Am J Physiol. 1999;277:R1481–7.

    PubMed  CAS  Google Scholar 

  54. Fogel MA, Gupta K, Baxter MS, Weinberg PM, Haselgrove J, Hoffman EA. Biomechanics of the deconditioned left ventricle. Am J Physiol. 1996;40:H1193–206.

    Google Scholar 

  55. Fogel MA, Gupta KB, Weinberg PW, Hoffman EA. Regional wall motion and strain analysis across stages of Fontan reconstruction by magnetic resonance tagging. Am J Physiol. 1995;38:H1132–52.

    Google Scholar 

  56. Fogel MA, Weinberg PM, Fellows KE, Hoffman EA. A study in ventricular – ventricular interaction: single right ventricles ­compared with systemic right ventricles in a dual chambered circulation. Circulation. 1995;92:219–30.

    PubMed  CrossRef  CAS  Google Scholar 

  57. Beyer R, Sideman S. A computer study of left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ Res. 1984;55:358–75.

    CrossRef  Google Scholar 

  58. Young AA, Axel L, Dougherty L, et al. Validation of tagging with MR imaging to estimate material deformation. Radiology. 1993;188:101–8.

    PubMed  CAS  Google Scholar 

  59. Waldman LK, Fung YC, Covell JW. Transmural myocardial deformation in the canine left ventricle. Circ Res. 1985;57:152–63.

    PubMed  CrossRef  CAS  Google Scholar 

  60. Garot J, Bluemke DA, Osman NF, Rochitte CE, McVeigh ER, Zerhouni EA, Prince JL, Lima JAC. Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. Circulation. 2000;101:981–8.

    PubMed  CrossRef  CAS  Google Scholar 

  61. Osman NF, Prince JL. Regenerating MR tagged images using harmonic phase (HARP) methods. IEEE Trans Biomed Eng. 2004;51:1428–33.

    PubMed  CrossRef  Google Scholar 

  62. Osman NF, Prince JL. Visualizing myocardial function using HARP MRI. Phys Med Biol. 2000;45:1665–82.

    PubMed  CrossRef  CAS  Google Scholar 

  63. Menteer J, Weinberg PM, Fogel MA. Quantifying regional right ventricular function in tetralogy of Fallot. J Cardiovasc Magn Reson. 2005;7:753–61.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Fogel M.D., FACC, FAHA, FAAP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Fogel, M.A. (2012). General Principles of Cardiac Magnetic Resonance Imaging. In: Syed, M., Mohiaddin, R. (eds) Magnetic Resonance Imaging of Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-4267-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4267-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4266-9

  • Online ISBN: 978-1-4471-4267-6

  • eBook Packages: MedicineMedicine (R0)