Advertisement

Transposition of Great Arteries

Chapter

Abstract

Transposition of the great arteries (TGA) is a form of conotruncal abnormalities in which the aorta arises from the morphological right ventricle and pulmonary artery arises from the morphological left ventricle (ventriculoarterial discordance). TGA encompasses two distinct defects, complete TGA and congenitally corrected TGA. Complete TGA has a prevalence of 0.24/1,000 live births [12] and represents ∼% of all congenital heart disease [25]. It is the second most common congenital heart defect recognized in infancy [12]. Congenitally corrected TGA is rarer, recognized in 0.02–0.07 per 1,000 live births [15], or less than 1 % of congenital heart defects [25].

Keywords

Cardiac Magnetic Resonance Right Ventricle Late Gadolinium Enhancement Ventricular Septal Defect Main Pulmonary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Movie 11.1

Axial SSFP cine of a patient with complete TGA following an atrial baffle procedure through the superior systemic baffle draining into the left ventricle (AVI 82557 KB)

Movie 11.2

SSFP cine in the 4 chamber orientation through a portion of the pulmonary baffle in a patient with complete TGA and a prior atrial baffle procedure. The right ventricle and tricuspid valve annulus are significantly dilated with resultant tricuspid regurgitation (AVI 82557 KB)

Movie 11.3

Right ventricular outflow tract SSFP cines demonstrating the relationship of the left ventricular outflow tract and the pulmonary conduit in a patient with a prior Rastelli procedure for complete TGA. Poor coaptation of pulmonic valve and pulmonic insufficiency can be seen (AVI 57791 KB)

Movie 11.4

3 chamber or left ventricular outflow view SSFP cines in a patient with a Rastelli procedure for complete TGA with an associated VSD. Narrowing in the LVOT is seen with turbulent flow below the aortic valve. The narrowing in the LVOT did not produce a significant gradient by echocardiography (1.8 m/s) (AVI 60543 KB)

Movie 11.5

Coronal SSFP cine through the outflow tracts of an adult with previously unrecognized congenitally corrected TGA and situs inversus totalis. The systemic right ventricle is massively dilated and failing. The side-by-side orientation of the outflow tracts common in congenitally corrected TGA is well demonstrated here. Both semilunar valves demonstrate insufficiency which was subsequently further characterized by oblique axial phase contrast images through the outflow tracts. While dextrocardia or mesocardia is present in up to 20 % of patients with congenitally corrected TGA, situs inversus totalis is very rare. The left-sided liver and right-sided gastric bubble can be seen in this image (AVI 68798 KB)

Movie 11.6

Four chamber orientation of an SSFP-based resting perfusion sequence in a patient with congenitally corrected TGA, situs inversus totalis and a failing systemic right ventricle. Perfusion was obtained to further evaluate possible intracardiac thrombus noted on SSFP cines. The oblong structures along the septum of the systemic right ventricle do not perfuse, nor did they enhance on delayed images, supporting the diagnosis of intracardiac thrombus. Thrombus had not been identified on prior echocardiography evaluation (AVI 137594 KB)

Movie 11.7

Coronal SSFP cine of an adult patient with congenitally corrected TGA and a large outflow VSD. Turbulent flow is seen through the subpulmonic outflow, which is narrowed, and across the VSD in a left to right shunt into a dilated main pulmonary artery. The Qp:Qs by subsequent heart catheterization confirmed to be 2.1:1 (AVI 82557 KB)

References

  1. 1.
    Babu-Narayan SV, et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111(16):2091–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Baumgartner H, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010): the task force on the management of grown-up congenital heart disease of the European Society of Cardiology (ESC). Eur Heart J. 2010;31(23):2915–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Bottega NA, et al. Stenosis of the superior limb of the systemic venous baffle following a mustard procedure: an under-recognized problem. Int J Cardiol. 2010;154(1):32–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheitlin MD, et al. ACC/AHA guidelines for the clinical application of echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation. 1997;95(6):1686–744.PubMedCrossRefGoogle Scholar
  5. 5.
    Chow PC, et al. New two-dimensional global longitudinal strain and strain rate imaging for assessment of systemic right ventricular function. Heart. 2008;94(7):855–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Cook SC, et al. Usefulness of multislice computed tomography angiography to evaluate intravascular stents and transcatheter occlusion devices in patients with d-transposition of the great arteries after Mustard repair. Am J Cardiol. 2004;94(7):967–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Deanfield J, et al. Management of grown up congenital heart disease. Eur Heart J. 2003;24(11):1035–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Dorfman AL, Geva T. Magnetic resonance imaging evaluation of congenital heart disease: conotruncal anomalies. J Cardiovasc Magn Reson. 2006;8(4):645–59.PubMedCrossRefGoogle Scholar
  9. 9.
    Fogel MA, Hubbard A, Weinberg PM. Mid-term follow-up of patients with transposition of the great arteries after atrial inversion operation using two- and three-dimensional magnetic resonance imaging. Pediatr Radiol. 2002;32(6):440–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Fogel MA, Hubbard A, Weinberg PM. A simplified approach for assessment of intracardiac baffles and extracardiac conduits in congenital heart surgery with two- and three-dimensional magnetic resonance imaging. Am Heart J. 2001;142(6):1028–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Fratz S, et al. Myocardial scars determined by delayed-enhancement magnetic resonance imaging and positron emission tomography are not common in right ventricles with systemic function in long-term follow up. Heart. 2006;92(11):1673–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Fulton DR, Flyer DC. D-transposition of the great arteries. In: Nadas’ Pediatric Cardiology. 2nd ed. Philadelphia: Saunders; 2006.Google Scholar
  13. 13.
    Giardini A, et al. Effect of abnormal pulmonary flow distribution on ventilatory efficiency and exercise capacity after arterial switch operation for transposition of great arteries. Am J Cardiol. 2010;106(7):1023–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Johansson B, et al. 3-Dimensional time-resolved contrast-enhanced magnetic resonance angiography for evaluation late after the Mustard operation for transposition. Cardiol Young. 2010;20(1):1–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Keane JF, Flyer D. Corrected’ transposition of the great arteries. In: Nadas’ pediatric cardiology. 2nd ed. Philadelphia: Saunders; 2006.Google Scholar
  16. 16.
    Kilner PJ, et al. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31(7):794–805.PubMedCrossRefGoogle Scholar
  17. 17.
    Oechslin E, Jenni R. 40 Years after the first atrial switch procedure in patients with transposition of the great arteries: long-term results in Toronto and Zurich. Thorac Cardiovasc Surg. 2000;48(4):|233–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Prakash A, et al. Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol. 2004;93(5):657–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Rao PS. Diagnosis and management of cyanotic congenital heart disease: part I. Indian J Pediatr. 2009;76(1):57–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Salehian O, et al. Assessment of systemic right ventricular function in patients with transposition of the great arteries using the myocardial performance index: comparison with cardiac magnetic resonance imaging. Circulation. 2004;110(20):3229–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Silversides CK, et al. Canadian Cardiovascular Society 2009 consensus conference on the management of adults with congenital heart disease: complex congenital cardiac lesions. Can J Cardiol. 2010;26(3):e98–117.PubMedCrossRefGoogle Scholar
  22. 22.
    Skinner J, Hornung T, Rumball E. Transposition of the great arteries: from fetus to adult. Heart. 2008;94(9):1227–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Taylor AM, et al. MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology. 2005;234(2):542–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Therrien J, et al. Canadian Cardiovascular Society consensus conference 2001 update: recommendations for the management of adults with congenital heart disease part III. Can J Cardiol. 2001;17(11):1135–58.PubMedGoogle Scholar
  25. 25.
    Warnes CA. Transposition of the great arteries. Circulation. 2006;114(24):2699–709.PubMedCrossRefGoogle Scholar
  26. 26.
    Warnes CA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Writing Committee to develop guidelines on the management of adults with congenital heart disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e1–121.CrossRefGoogle Scholar
  27. 27.
    Winter MM, et al. Echocardiographic determinants of the clinical condition in patients with a systemic right ventricle. Echocardiography. 2010;27(10):1247–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of Cardiac EnergeticsNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUSA
  2. 2.Department of Medicine and RadiologyStritch School of Medicine, Loyola University ChicagoChicagoUSA
  3. 3.Cardiovascular ImagingHeart and Vascular Institute, Loyola University Medical CenterMaywoodUSA

Personalised recommendations